/*!
* \file complex_carrier_test.cc
* \brief This file implements tests for the generation of complex exponentials.
* \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
#include "gnss_signal_processing.h"
#include
#include
#include
#if HAS_SPAN
#include
namespace gsl = std;
#else
#include
#endif
DEFINE_int32(size_carrier_test, 100000, "Size of the arrays used for complex carrier testing");
TEST(ComplexCarrierTest, StandardComplexImplementation)
{
// Dynamic allocation creates new usable space on the program STACK
// (an area of RAM specifically allocated to the program)
auto* output = new std::complex[FLAGS_size_carrier_test];
const double _f = 2000.0;
const double _fs = 2000000.0;
const auto phase_step = static_cast((GPS_TWO_PI * _f) / _fs);
double phase = 0.0;
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
output[i] = std::complex(cos(phase), sin(phase));
phase += phase_step;
}
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "A " << FLAGS_size_carrier_test
<< "-length complex carrier in standard C++ (dynamic allocation) generated in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
std::complex expected(1, 0);
std::vector> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
mag[i] = output[i] * std::conj(output[i]);
}
delete[] output;
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i]));
}
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(ComplexCarrierTest, C11ComplexImplementation)
{
// declaration: load data onto the program data segment
std::vector> output(FLAGS_size_carrier_test);
const double _f = 2000.0;
const double _fs = 2000000.0;
const auto phase_step = static_cast((GPS_TWO_PI * _f) / _fs);
double phase = 0.0;
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
output[i] = std::complex(cos(phase), sin(phase));
phase += phase_step;
}
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "A " << FLAGS_size_carrier_test
<< "-length complex carrier in standard C++ (declaration) generated in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex expected(1, 0);
std::vector> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
mag[i] = output[i] * std::conj(output[i]);
ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i]));
}
}
TEST(ComplexCarrierTest, OwnComplexImplementation)
{
auto* output = new std::complex[FLAGS_size_carrier_test];
double _f = 2000.0;
double _fs = 2000000.0;
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
complex_exp_gen(gsl::span>(output, static_cast(FLAGS_size_carrier_test)), _f, _fs);
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "A " << FLAGS_size_carrier_test
<< "-length complex carrier using fixed point generated in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
std::complex expected(1, 0);
std::vector> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
mag[i] = output[i] * std::conj(output[i]);
}
delete[] output;
for (int i = 0; i < FLAGS_size_carrier_test; i++)
{
ASSERT_NEAR(std::norm(expected), std::norm(mag[i]), 0.0001);
}
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}