/*! * \file complex_carrier_test.cc * \brief This file implements tests for the generation of complex exponentials. * \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es * * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "GPS_L1_CA.h" #include "gnss_signal_replica.h" #include #include #include DEFINE_int32(size_carrier_test, 100000, "Size of the arrays used for complex carrier testing"); TEST(ComplexCarrierTest, StandardComplexImplementation) { // Dynamic allocation creates new usable space on the program STACK // (an area of RAM specifically allocated to the program) auto* output = new std::complex[FLAGS_size_carrier_test]; const double _f = 2000.0; const double _fs = 2000000.0; const auto phase_step = (TWO_PI * _f) / _fs; double phase = 0.0; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); for (int i = 0; i < FLAGS_size_carrier_test; i++) { output[i] = std::complex(cos(phase), sin(phase)); phase += phase_step; } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "A " << FLAGS_size_carrier_test << "-length complex carrier in standard C++ (dynamic allocation) generated in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; std::complex expected(1, 0); std::vector> mag(FLAGS_size_carrier_test); for (int i = 0; i < FLAGS_size_carrier_test; i++) { mag[i] = output[i] * std::conj(output[i]); } delete[] output; for (int i = 0; i < FLAGS_size_carrier_test; i++) { ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i])); } ASSERT_LE(0, elapsed_seconds.count() * 1e6); } TEST(ComplexCarrierTest, C11ComplexImplementation) { // declaration: load data onto the program data segment std::vector> output(FLAGS_size_carrier_test); const double _f = 2000.0; const double _fs = 2000000.0; const auto phase_step = (TWO_PI * _f) / _fs; double phase = 0.0; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); for (int i = 0; i < FLAGS_size_carrier_test; i++) { output[i] = std::complex(cos(phase), sin(phase)); phase += phase_step; } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "A " << FLAGS_size_carrier_test << "-length complex carrier in standard C++ (declaration) generated in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; ASSERT_LE(0, elapsed_seconds.count() * 1e6); std::complex expected(1, 0); std::vector> mag(FLAGS_size_carrier_test); for (int i = 0; i < FLAGS_size_carrier_test; i++) { mag[i] = output[i] * std::conj(output[i]); ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i])); } } TEST(ComplexCarrierTest, OwnComplexImplementation) { std::vector> output(FLAGS_size_carrier_test); double _f = 2000.0; double _fs = 2000000.0; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); complex_exp_gen(output, _f, _fs); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "A " << FLAGS_size_carrier_test << "-length complex carrier using fixed point generated in " << elapsed_seconds.count() * 1e6 << " microseconds\n"; std::complex expected(1, 0); std::vector> mag(FLAGS_size_carrier_test); for (int i = 0; i < FLAGS_size_carrier_test; i++) { mag[i] = output[i] * std::conj(output[i]); } for (int i = 0; i < FLAGS_size_carrier_test; i++) { ASSERT_NEAR(std::norm(expected), std::norm(mag[i]), 0.0001); } ASSERT_LE(0, elapsed_seconds.count() * 1e6); }