% ------------------------------------------------------------------------- % % Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) % % GNSS-SDR is a software defined Global Navigation % Satellite Systems receiver % % This file is part of GNSS-SDR. % % GNSS-SDR is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % at your option) any later version. % % GNSS-SDR is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with GNSS-SDR. If not, see . % % ------------------------------------------------------------------------- % % Antonio Ramos, 2018. antonio.ramos(at)cttc.es clear all; clc; n_channel = 0; symbol_period = 20e-3; filename = 'track_ch_'; fontsize = 12; addpath('./data') % Path to gnss-sdr dump files (Tracking and PVT) addpath('./geoFunctions') load([filename int2str(n_channel) '.mat']); t = (0 : length(abs_P) - 1) * symbol_period; hf = figure('visible', 'off'); set(hf, 'paperorientation', 'landscape'); subplot(3, 3, [1,3]) plot(t, abs_E, t, abs_P, t, abs_L) xlabel('Time [s]','fontname','Times','fontsize', fontsize) ylabel('Correlation result','fontname','Times','fontsize', fontsize) legend('Early', 'Prompt', 'Late') grid on subplot(3, 3, 7) plot(Prompt_I./1000, Prompt_Q./1000, 'linestyle', 'none', 'marker', '.') xlabel('I','fontname','Times','fontsize', fontsize) ylabel('Q','fontname','Times','fontsize', fontsize) axis equal grid on subplot(3, 3, [4,6]) plot(t, Prompt_I) xlabel('Time [s]','fontname','Times','fontsize', fontsize) ylabel('Navigation data bits','fontname','Times','fontsize', fontsize) grid on fileID = fopen('data/access18.dat', 'r'); dinfo = dir('data/access18.dat'); filesize = dinfo.bytes; aux = 1; while ne(ftell(fileID), filesize) navsol.TOW_at_current_symbol_ms(aux) = fread(fileID, 1, 'uint32'); navsol.week(aux) = fread(fileID, 1, 'uint32'); navsol.RX_time(aux) = fread(fileID, 1, 'double'); navsol.user_clock_offset(aux) = fread(fileID, 1, 'double'); navsol.X(aux) = fread(fileID, 1, 'double'); navsol.Y(aux) = fread(fileID, 1, 'double'); navsol.Z(aux) = fread(fileID, 1, 'double'); navsol.VX(aux) = fread(fileID, 1, 'double'); navsol.VY(aux) = fread(fileID, 1, 'double'); navsol.VZ(aux) = fread(fileID, 1, 'double'); navsol.varXX(aux) = fread(fileID, 1, 'double'); navsol.varYY(aux) = fread(fileID, 1, 'double'); navsol.varZZ(aux) = fread(fileID, 1, 'double'); navsol.varXY(aux) = fread(fileID, 1, 'double'); navsol.varYZ(aux) = fread(fileID, 1, 'double'); navsol.varZX(aux) = fread(fileID, 1, 'double'); navsol.latitude(aux) = fread(fileID, 1, 'double'); navsol.longitude(aux) = fread(fileID, 1, 'double'); navsol.height(aux) = fread(fileID, 1, 'double'); navsol.number_sats(aux) = fread(fileID, 1, 'uint8'); navsol.solution_status(aux) = fread(fileID, 1, 'uint8'); navsol.solution_type(aux) = fread(fileID, 1, 'uint8'); navsol.AR_ratio_factor(aux) = fread(fileID, 1, 'float'); navsol.AR_ratio_threshold(aux) = fread(fileID, 1, 'float'); navsol.GDOP(aux) = fread(fileID, 1, 'double'); navsol.PDOP(aux) = fread(fileID, 1, 'double'); navsol.HDOP(aux) = fread(fileID, 1, 'double'); navsol.VDOP(aux) = fread(fileID, 1, 'double'); aux = aux + 1; end fclose(fileID); mean_Latitude = mean(navsol.latitude); mean_Longitude = mean(navsol.longitude); mean_h = mean(navsol.height); utmZone = findUtmZone(mean_Latitude, mean_Longitude); [ref_X_cart, ref_Y_cart, ref_Z_cart] = geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5); [mean_utm_X, mean_utm_Y, mean_utm_Z] = cart2utm(ref_X_cart, ref_Y_cart, ref_Z_cart, utmZone); numPoints = length(navsol.X); aux = 0; for n = 1:numPoints aux = aux+1; [E(aux), N(aux), U(aux)] = cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone); end v_2d = [E;N].'; % 2D East Nort position vectors v_3d = [E;N;U].'; % 2D East Nort position vectors %% ACCURACY % 2D ------------------- sigma_E_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,1) - mean_utm_X).^2)); sigma_N_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,2) - mean_utm_Y).^2)); sigma_ratio_2d_accuracy = sigma_N_accuracy / sigma_E_accuracy % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% DRMS_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_DRMS_accuracy = 2 * DRMS_accuracy % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% CEP_accuracy = 0.62 * sigma_E_accuracy + 0.56 * sigma_N_accuracy % 3D ------------------- sigma_U_accuracy = sqrt((1/(numPoints-1)) * sum((v_3d(:,3) - mean_utm_Z).^2)); % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% SEP_accuracy = 0.51 * sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% MRSE_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_MRSE_accuracy=2 * MRSE_accuracy %% PRECISION % 2D Mean and Variance mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))]; sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))]; sigma_ratio_2d = sigma_2d(2) / sigma_2d(1) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% DRMS = sqrt(sigma_2d(1)^2 + sigma_2d(2)^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_DRMS = 2 * DRMS % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% CEP = 0.62 * sigma_2d(1) + 0.56 * sigma_2d(2) % 3D Mean and Variance mean_3d = [mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))]; sigma_3d = [sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))]; % absolute mean error error_2D_vec = [mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)]; error_2D_m = norm(error_2D_vec) error_3D_vec = [mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)]; error_3D_m = norm(error_3D_vec) RMSE_X = sqrt(mean((v_3d(:,1)-mean_utm_X).^2)) RMSE_Y = sqrt(mean((v_3d(:,2)-mean_utm_Y).^2)) RMSE_Z = sqrt(mean((v_3d(:,3)-mean_utm_Z).^2)) RMSE_2D = sqrt(mean((v_2d(:,1)-mean_utm_X).^2 + (v_2d(:,2)-mean_utm_Y).^2)) RMSE_3D = sqrt(mean((v_3d(:,1)-mean_utm_X).^2 + (v_3d(:,2)-mean_utm_Y).^2 + (v_3d(:,3)-mean_utm_Z).^2)) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% SEP = 0.51 * sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% MRSE = sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2) % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% TWO_MRSE = 2 * MRSE %% SCATTER PLOT 2D subplot(3,3,8) scatter(v_2d(:,1)-mean_2d(1), v_2d(:,2)-mean_2d(2)); hold on; plot(0, 0, 'k*'); [x,y,z] = cylinder([TWO_DRMS TWO_DRMS], 200); plot(x(1,:), y(1,:), 'Color', [0 0.6 0]); str = strcat('2DRMS=', num2str(TWO_DRMS), ' m'); text(cosd(65)*TWO_DRMS, sind(65)*TWO_DRMS, str, 'Color', [0 0.6 0]); [x,y,z] = cylinder([CEP CEP], 200); plot(x(1,:), y(1,:), 'r--'); str = strcat('CEP=', num2str(CEP), ' m'); text(cosd(80)*CEP, sind(80)*CEP, str, 'Color','r'); grid on axis equal; xlabel('North [m]','fontname','Times','fontsize', fontsize) ylabel('East [m]','fontname','Times','fontsize', fontsize) %% SCATTER PLOT 3D subplot(3,3,9) scatter3(v_3d(:,1)-mean_3d(1), v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3)); hold on; [x,y,z] = sphere(); hSurface = surf(MRSE*x, MRSE*y, MRSE*z); % sphere centered at origin set(hSurface, 'facecolor', 'none', 'edgecolor', [0 0.6 0], 'edgealpha', 1, 'facealpha', 1); xlabel('North [m]', 'fontname', 'Times', 'fontsize', fontsize-2) ylabel('East [m]', 'fontname', 'Times', 'fontsize', fontsize-2) zlabel('Up [m]', 'fontname', 'Times', 'fontsize', fontsize-2) str = strcat('MRSE=', num2str(MRSE), ' m') text(cosd(45)*MRSE, sind(45)*MRSE, 20, str, 'Color', [0 0.6 0]); a = gca; set(a, 'fontsize', fontsize-6) hh = findall(hf, '-property', 'FontName'); set(hh, 'FontName', 'Times'); print(hf, 'Figure2.eps', '-depsc') close(hf);