/*! * \file multiply_test.cc * \brief This file implements tests for the multiplication of long arrays. * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com * Carles Fernandez-Prades, 2012. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include #include #include #include DEFINE_int32(size_multiply_test, 100000, "Size of the arrays used for multiply testing"); TEST(MultiplyTest, StandardCDoubleImplementation) { auto* input = new double[FLAGS_size_multiply_test]; auto* output = new double[FLAGS_size_multiply_test]; std::fill_n(input, FLAGS_size_multiply_test, 0.0); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); for (int i = 0; i < FLAGS_size_multiply_test; i++) { output[i] = input[i] * input[i]; } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << " doubles in standard C finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; double acc = 0.0; double expected = 0.0; for (int i = 0; i < FLAGS_size_multiply_test; i++) { acc += output[i]; } delete[] input; delete[] output; ASSERT_LE(0, elapsed_seconds.count() * 1e6); ASSERT_EQ(expected, acc); } TEST(MultiplyTest, ArmadilloImplementation) { arma::vec input(FLAGS_size_multiply_test, arma::fill::zeros); arma::vec output(FLAGS_size_multiply_test); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); output = input % input; end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length double Armadillo vectors finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; ASSERT_LE(0, elapsed_seconds.count() * 1e6); ASSERT_EQ(0, arma::norm(output, 2)); } TEST(MultiplyTest, StandardCComplexImplementation) { auto* input = new std::complex[FLAGS_size_multiply_test]; auto* output = new std::complex[FLAGS_size_multiply_test]; std::fill_n(input, FLAGS_size_multiply_test, std::complex(0.0, 0.0)); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); for (int i = 0; i < FLAGS_size_multiply_test; i++) { output[i] = input[i] * input[i]; } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << " complex in standard C finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; std::complex expected(0.0, 0.0); std::complex result(0.0, 0.0); for (int i = 0; i < FLAGS_size_multiply_test; i++) { result += output[i]; } delete[] input; delete[] output; ASSERT_LE(0, elapsed_seconds.count() * 1e6); ASSERT_EQ(expected, result); } TEST(MultiplyTest, C11ComplexImplementation) { const std::vector> input(FLAGS_size_multiply_test); std::vector> output(FLAGS_size_multiply_test); int pos = 0; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Trying a range-based for for (const auto& item : input) { output[pos++] = item * item; } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << " complex vector (C++11-style) finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; ASSERT_LE(0, elapsed_seconds.count() * 1e6); std::complex expected(0.0, 0.0); auto result = std::inner_product(output.begin(), output.end(), output.begin(), expected); ASSERT_EQ(expected, result); } TEST(MultiplyTest, ArmadilloComplexImplementation) { arma::cx_fvec input(FLAGS_size_multiply_test, arma::fill::zeros); arma::cx_fvec output(FLAGS_size_multiply_test); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); output = input % input; end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length complex float Armadillo vectors finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; ASSERT_LE(0, elapsed_seconds.count() * 1e6); ASSERT_EQ(0, arma::norm(output, 2)); } TEST(MultiplyTest, VolkComplexImplementation) { auto* input = static_cast*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(std::complex), volk_gnsssdr_get_alignment())); auto* output = static_cast*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(std::complex), volk_gnsssdr_get_alignment())); std::fill_n(input, FLAGS_size_multiply_test, std::complex(0.0, 0.0)); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); volk_32fc_x2_multiply_32fc(output, input, input, FLAGS_size_multiply_test); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length complex float vector using VOLK finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; ASSERT_LE(0, elapsed_seconds.count() * 1e6); auto* mag = static_cast(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(float), volk_gnsssdr_get_alignment())); volk_32fc_magnitude_32f(mag, output, FLAGS_size_multiply_test); auto* result = new float(0.0); volk_32f_accumulator_s32f(result, mag, FLAGS_size_multiply_test); // Comparing floating-point numbers is tricky. // Due to round-off errors, it is very unlikely that two floating-points will match exactly. // See https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#floating-point-comparison float expected = 0.0; ASSERT_FLOAT_EQ(expected, result[0]); volk_gnsssdr_free(input); volk_gnsssdr_free(output); volk_gnsssdr_free(mag); } TEST(MultiplyTest, VolkComplexImplementationAlloc) { volk_gnsssdr::vector> input(FLAGS_size_multiply_test, std::complex(0.0, 0.0)); volk_gnsssdr::vector> output(FLAGS_size_multiply_test); std::chrono::time_point start, end; start = std::chrono::system_clock::now(); volk_32fc_x2_multiply_32fc(output.data(), input.data(), input.data(), FLAGS_size_multiply_test); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test << "-length complex float vector using VOLK ALLOC finished in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; ASSERT_LE(0, elapsed_seconds.count() * 1e6); volk_gnsssdr::vector mag(FLAGS_size_multiply_test); volk_32fc_magnitude_32f(mag.data(), output.data(), FLAGS_size_multiply_test); auto* result = new float(0.0); volk_32f_accumulator_s32f(result, mag.data(), FLAGS_size_multiply_test); // Comparing floating-point numbers is tricky. // Due to round-off errors, it is very unlikely that two floating-points will match exactly. // See https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#floating-point-comparison float expected = 0.0; ASSERT_FLOAT_EQ(expected, result[0]); }