/*!
* \file multiply_test.cc
* \brief This file implements tests for the multiplication of long arrays.
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Carles Fernandez-Prades, 2012. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include
#include
#include
#include
#include
#include
#include
DEFINE_int32(size_multiply_test, 100000, "Size of the arrays used for multiply testing");
TEST(MultiplyTest, StandardCDoubleImplementation)
{
auto* input = new double[FLAGS_size_multiply_test];
auto* output = new double[FLAGS_size_multiply_test];
std::fill_n(input, FLAGS_size_multiply_test, 0.0);
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
output[i] = input[i] * input[i];
}
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< " doubles in standard C finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
double acc = 0.0;
double expected = 0.0;
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
acc += output[i];
}
delete[] input;
delete[] output;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(expected, acc);
}
TEST(MultiplyTest, ArmadilloImplementation)
{
arma::vec input(FLAGS_size_multiply_test, arma::fill::zeros);
arma::vec output(FLAGS_size_multiply_test);
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
output = input % input;
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length double Armadillo vectors finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(0, arma::norm(output, 2));
}
TEST(MultiplyTest, StandardCComplexImplementation)
{
auto* input = new std::complex[FLAGS_size_multiply_test];
auto* output = new std::complex[FLAGS_size_multiply_test];
std::fill_n(input, FLAGS_size_multiply_test, std::complex(0.0, 0.0));
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
output[i] = input[i] * input[i];
}
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< " complex in standard C finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
std::complex expected(0.0, 0.0);
std::complex result(0.0, 0.0);
for (int i = 0; i < FLAGS_size_multiply_test; i++)
{
result += output[i];
}
delete[] input;
delete[] output;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(expected, result);
}
TEST(MultiplyTest, C11ComplexImplementation)
{
const std::vector> input(FLAGS_size_multiply_test);
std::vector> output(FLAGS_size_multiply_test);
int pos = 0;
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
// Trying a range-based for
for (const auto& item : input)
{
output[pos++] = item * item;
}
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< " complex vector (C++11-style) finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex expected(0.0, 0.0);
auto result = std::inner_product(output.begin(), output.end(), output.begin(), expected);
ASSERT_EQ(expected, result);
}
TEST(MultiplyTest, ArmadilloComplexImplementation)
{
arma::cx_fvec input(FLAGS_size_multiply_test, arma::fill::zeros);
arma::cx_fvec output(FLAGS_size_multiply_test);
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
output = input % input;
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length complex float Armadillo vectors finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
ASSERT_EQ(0, arma::norm(output, 2));
}
TEST(MultiplyTest, VolkComplexImplementation)
{
auto* input = static_cast*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(std::complex), volk_gnsssdr_get_alignment()));
auto* output = static_cast*>(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(std::complex), volk_gnsssdr_get_alignment()));
std::fill_n(input, FLAGS_size_multiply_test, std::complex(0.0, 0.0));
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
volk_32fc_x2_multiply_32fc(output, input, input, FLAGS_size_multiply_test);
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length complex float vector using VOLK finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
auto* mag = static_cast(volk_gnsssdr_malloc(FLAGS_size_multiply_test * sizeof(float), volk_gnsssdr_get_alignment()));
volk_32fc_magnitude_32f(mag, output, FLAGS_size_multiply_test);
auto* result = new float(0.0);
volk_32f_accumulator_s32f(result, mag, FLAGS_size_multiply_test);
// Comparing floating-point numbers is tricky.
// Due to round-off errors, it is very unlikely that two floating-points will match exactly.
// See https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#floating-point-comparison
float expected = 0.0;
ASSERT_FLOAT_EQ(expected, result[0]);
volk_gnsssdr_free(input);
volk_gnsssdr_free(output);
volk_gnsssdr_free(mag);
}
TEST(MultiplyTest, VolkComplexImplementationAlloc)
{
volk_gnsssdr::vector> input(FLAGS_size_multiply_test, std::complex(0.0, 0.0));
volk_gnsssdr::vector> output(FLAGS_size_multiply_test);
std::chrono::time_point start, end;
start = std::chrono::system_clock::now();
volk_32fc_x2_multiply_32fc(output.data(), input.data(), input.data(), FLAGS_size_multiply_test);
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
std::cout << "Element-wise multiplication of " << FLAGS_size_multiply_test
<< "-length complex float vector using VOLK ALLOC finished in " << elapsed_seconds.count() * 1e6
<< " microseconds" << std::endl;
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
volk_gnsssdr::vector mag(FLAGS_size_multiply_test);
volk_32fc_magnitude_32f(mag.data(), output.data(), FLAGS_size_multiply_test);
auto* result = new float(0.0);
volk_32f_accumulator_s32f(result, mag.data(), FLAGS_size_multiply_test);
// Comparing floating-point numbers is tricky.
// Due to round-off errors, it is very unlikely that two floating-points will match exactly.
// See https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#floating-point-comparison
float expected = 0.0;
ASSERT_FLOAT_EQ(expected, result[0]);
}