/*!
* \file lock_detectors.cc
* \brief Implementation of a library with a set of code and carrier phase lock detectors.
*
* SNV_CN0 is a Carrier-to-Noise (CN0) estimator
* based on the Signal-to-Noise Variance (SNV) estimator [1].
* Carrier lock detector using normalised estimate of the cosine
* of twice the carrier phase error [2].
*
* [1] Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
* IEEE 10th International Symposium on Spread Spectrum Techniques and
* Applications, pp.28-30, August 2008.
*
* [2] Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
* Applications,
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
* Inc.: 329-407.
* \authors
* - Javier Arribas, 2011. jarribas(at)cttc.es
*
- Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "lock_detectors.h"
#include
/*
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
* \f}
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*
* The SNR value is converted to CN0 [dB-Hz], taking to account the coherent integration time, using the following formula:
* \f{equation}
* CN0_{dB}=10*log(\hat{\rho})-10*log(T_{int}),
* \f}
* where \f$T_{int}\f$ is the coherent integration time, in seconds.
*
*/
float cn0_svn_estimator(const gr_complex* Prompt_buffer, int length, float coh_integration_time_s)
{
float SNR = 0.0;
float SNR_dB_Hz = 0.0;
float Psig = 0.0;
float Ptot = 0.0;
for (int i = 0; i < length; i++)
{
Psig += std::abs(Prompt_buffer[i].real());
Ptot += Prompt_buffer[i].imag() * Prompt_buffer[i].imag() + Prompt_buffer[i].real() * Prompt_buffer[i].real();
}
Psig /= static_cast(length);
Psig = Psig * Psig;
Ptot /= static_cast(length);
SNR = Psig / (Ptot - Psig);
SNR_dB_Hz = 10.0 * std::log10(SNR) - 10.0 * std::log10(coh_integration_time_s);
return SNR_dB_Hz;
}
/*
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Moments Method:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\sqrt{2*\hat{M}_2^2 - \hat{M}_4 }}{\hat{M}_2-\sqrt{2*\hat{M}_2^2 - \hat{M}_4 }},
* \f}
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
* \f$ \hat{M}_2=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2 \f$, \f$\hat{M}_4 = \frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^4 \f$, \f$|\cdot|\f$ is the absolute value,
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*
* The SNR value is converted to CN0 [dB-Hz], taking to account the coherent integration time, using the following formula:
* \f{equation}
* CN0_{dB}=10*log(\hat{\rho})-10*log(T_{int}),
* \f}
* where \f$T_{int}\f$ is the coherent integration time, in seconds.
*
*/
float cn0_m2m4_estimator(const gr_complex* Prompt_buffer, int length, float coh_integration_time_s)
{
float SNR_aux = 0.0;
float SNR_dB_Hz = 0.0;
float Psig = 0.0;
float m_2 = 0.0;
float m_4 = 0.0;
float aux;
auto n = static_cast(length);
for (int i = 0; i < length; i++)
{
Psig += std::abs(Prompt_buffer[i].real());
aux = Prompt_buffer[i].imag() * Prompt_buffer[i].imag() + Prompt_buffer[i].real() * Prompt_buffer[i].real();
m_2 += aux;
m_4 += (aux * aux);
}
Psig /= n;
Psig = Psig * Psig;
m_2 /= n;
m_4 /= n;
aux = std::sqrt(2.0 * m_2 * m_2 - m_4);
if (std::isnan(aux))
{
SNR_aux = Psig / (m_2 - Psig);
}
else
{
SNR_aux = aux / (m_2 - aux);
}
SNR_dB_Hz = 10.0 * std::log10(SNR_aux) - 10.0 * std::log10(coh_integration_time_s);
return SNR_dB_Hz;
}
/*
* The estimate of the cosine of twice the carrier phase error is given by
* \f{equation}
* \cos(2\phi)=\frac{NBD}{NBP},
* \f}
* where \f$NBD=(\sum^{N-1}_{i=0}Im(Pc(i)))^2-(\sum^{N-1}_{i=0}Re(Pc(i)))^2\f$,
* \f$NBP=(\sum^{N-1}_{i=0}Im(Pc(i)))^2+(\sum^{N-1}_{i=0}Re(Pc(i)))^2\f$, and
* \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*/
float carrier_lock_detector(gr_complex* Prompt_buffer, int length)
{
float tmp_sum_I = 0.0;
float tmp_sum_Q = 0.0;
float NBD = 0.0;
float NBP = 0.0;
for (int i = 0; i < length; i++)
{
tmp_sum_I += Prompt_buffer[i].real();
tmp_sum_Q += Prompt_buffer[i].imag();
}
NBP = tmp_sum_I * tmp_sum_I + tmp_sum_Q * tmp_sum_Q;
NBD = tmp_sum_I * tmp_sum_I - tmp_sum_Q * tmp_sum_Q;
return NBD / NBP;
}