/*! * \file fft_length_test.cc * \brief This file implements timing tests for the FFT. * \author Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2016 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include #include #include #include "gnuplot_i.h" #include "test_flags.h" DEFINE_int32(fft_iterations_test, 1000, "Number of averaged iterations in FFT length timing test"); DEFINE_bool(plot_fft_length_test, false, "Plots results of FFTLengthTest with gnuplot"); // Note from FFTW documentation: the standard FFTW distribution works most efficiently for arrays whose // size can be factored into small primes (2, 3, 5, and 7), and otherwise it uses a slower general-purpose routine. TEST(FFTLengthTest, MeasureExecutionTime) { unsigned int fft_sizes [] = { 512, 1000, 1024, 1100, 1297, 1400, 1500, 1960, 2000, 2048, 2221, 2500, 3000, 3500, 4000, 4096, 4200, 4500, 4725, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8192, 8500, 9000, 9500, 10000, 10368, 11000, 12000, 15000, 16000, 16384, 27000, 32768, 50000, 65536 }; std::chrono::time_point start, end; std::random_device r; std::default_random_engine e1(r()); std::default_random_engine e2(r()); std::uniform_real_distribution uniform_dist(-1, 1); auto func = [] (float a, float b) { return gr_complex(a, b); }; // Helper lambda function that returns a gr_complex auto random_number1 = std::bind(uniform_dist, e1); auto random_number2 = std::bind(uniform_dist, e2); auto gen = std::bind(func, random_number1, random_number2); // Function that returns a random gr_complex std::vector fft_sizes_v(fft_sizes, fft_sizes + sizeof(fft_sizes) / sizeof(unsigned int) ); std::sort(fft_sizes_v.begin(), fft_sizes_v.end()); std::vector::const_iterator it; unsigned int d_fft_size; std::vector execution_times; std::vector powers_of_two; std::vector execution_times_powers_of_two; EXPECT_NO_THROW( for(it = fft_sizes_v.cbegin(); it != fft_sizes_v.cend(); ++it) { gr::fft::fft_complex* d_fft; d_fft_size = *it; d_fft = new gr::fft::fft_complex(d_fft_size, true); std::generate_n( d_fft->get_inbuf(), d_fft_size, gen ); start = std::chrono::system_clock::now(); for(int k = 0; k < FLAGS_fft_iterations_test; k++) { d_fft->execute(); } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; double exec_time = elapsed_seconds.count() / static_cast(FLAGS_fft_iterations_test); execution_times.push_back(exec_time * 1e3); std::cout << "FFT execution time for length=" << d_fft_size << " : " << exec_time << " [s]" << std::endl; delete d_fft; if( (d_fft_size & (d_fft_size - 1)) == 0 ) // if it is a power of two { powers_of_two.push_back(d_fft_size); execution_times_powers_of_two.push_back(exec_time / 1e-3); } } ); if(FLAGS_plot_fft_length_test == true) { const std::string gnuplot_executable(FLAGS_gnuplot_executable); if(gnuplot_executable.empty()) { std::cout << "WARNING: Although the flag plot_fft_length_test has been set to TRUE," << std::endl; std::cout << "gnuplot has not been found in your system." << std::endl; std::cout << "Test results will not be plotted." << std::endl; } else { try { boost::filesystem::path p(gnuplot_executable); boost::filesystem::path dir = p.parent_path(); std::string gnuplot_path = dir.native(); Gnuplot::set_GNUPlotPath(gnuplot_path); Gnuplot g1("linespoints"); g1.set_title("FFT execution times for different lengths"); g1.set_grid(); g1.set_xlabel("FFT length"); g1.set_ylabel("Execution time [ms]"); g1.plot_xy(fft_sizes_v, execution_times, "FFT execution time (averaged over " + std::to_string(FLAGS_fft_iterations_test) + " iterations)"); g1.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2"); g1.savetops("FFT_execution_times_extended"); g1.savetopdf("FFT_execution_times_extended", 18); g1.showonscreen(); // window output Gnuplot g2("linespoints"); g2.set_title("FFT execution times for different lengths (up to 2^{14}=16384)"); g2.set_grid(); g2.set_xlabel("FFT length"); g2.set_ylabel("Execution time [ms]"); g2.set_xrange(0, 16384); g2.plot_xy(fft_sizes_v, execution_times, "FFT execution time (averaged over " + std::to_string(FLAGS_fft_iterations_test) + " iterations)"); g2.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2"); g2.savetops("FFT_execution_times"); g2.savetopdf("FFT_execution_times", 18); g2.showonscreen(); // window output } catch (GnuplotException ge) { std::cout << ge.what() << std::endl; } } } }