/*! * \file galileo_e1_signal_processing.cc * \brief This library implements various functions for Galileo E1 signals * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e1_signal_processing.h" #include "Galileo_E1.h" #include "gnss_signal_processing.h" #include #include #include #include void galileo_e1_code_gen_int(gsl::span _dest, const std::array& _Signal, int32_t _prn) { std::string _galileo_signal = _Signal.data(); int32_t prn = _prn - 1; int32_t index = 0; // A simple error check if ((_prn < 1) || (_prn > 50)) { return; } if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2) { for (char i : GALILEO_E1_B_PRIMARY_CODE[prn]) { hex_to_binary_converter(_dest.subspan(index, 4), i); index += 4; } } else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2) { for (char i : GALILEO_E1_C_PRIMARY_CODE[prn]) { hex_to_binary_converter(_dest.subspan(index, 4), i); index += 4; } } } void galileo_e1_sinboc_11_gen_int(gsl::span _dest, gsl::span _prn) { const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS; auto _period = static_cast(_dest.size() / _length_in); for (uint32_t i = 0; i < _length_in; i++) { for (uint32_t j = 0; j < (_period / 2); j++) { _dest[i * _period + j] = _prn[i]; } for (uint32_t j = (_period / 2); j < _period; j++) { _dest[i * _period + j] = -_prn[i]; } } } void galileo_e1_sinboc_61_gen_int(gsl::span _dest, gsl::span _prn) { const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS; auto _period = static_cast(_dest.size() / _length_in); for (uint32_t i = 0; i < _length_in; i++) { for (uint32_t j = 0; j < _period; j += 2) { _dest[i * _period + j] = _prn[i]; } for (uint32_t j = 1; j < _period; j += 2) { _dest[i * _period + j] = -_prn[i]; } } } void galileo_e1_code_gen_sinboc11_float(gsl::span _dest, const std::array& _Signal, uint32_t _prn) { std::string _galileo_signal = _Signal.data(); const auto _codeLength = static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS); std::array primary_code_E1_chips{}; galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip for (uint32_t i = 0; i < _codeLength; i++) { _dest[2 * i] = static_cast(primary_code_E1_chips[i]); _dest[2 * i + 1] = -_dest[2 * i]; } } void galileo_e1_gen_float(gsl::span _dest, gsl::span _prn, const std::array& _Signal) { std::string _galileo_signal = _Signal.data(); const uint32_t _codeLength = 12 * GALILEO_E1_B_CODE_LENGTH_CHIPS; const float alpha = sqrt(10.0 / 11.0); const float beta = sqrt(1.0 / 11.0); std::array sinboc_11{}; std::array sinboc_61{}; gsl::span sinboc_11_(sinboc_11.data(), _codeLength); gsl::span sinboc_61_(sinboc_61.data(), _codeLength); galileo_e1_sinboc_11_gen_int(sinboc_11_, _prn); // generate sinboc(1,1) 12 samples per chip galileo_e1_sinboc_61_gen_int(sinboc_61_, _prn); // generate sinboc(6,1) 12 samples per chip if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2) { for (uint32_t i = 0; i < _codeLength; i++) { _dest[i] = alpha * static_cast(sinboc_11[i]) + beta * static_cast(sinboc_61[i]); } } else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2) { for (uint32_t i = 0; i < _codeLength; i++) { _dest[i] = alpha * static_cast(sinboc_11[i]) - beta * static_cast(sinboc_61[i]); } } } void galileo_e1_code_gen_float_sampled(gsl::span _dest, const std::array& _Signal, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, bool _secondary_flag) { // This function is based on the GNU software GPS for MATLAB in Kay Borre's book std::string _galileo_signal = _Signal.data(); uint32_t _samplesPerCode; const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_CPS; // Hz std::vector primary_code_E1_chips(static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS)); _samplesPerCode = static_cast(static_cast(_fs) / (static_cast(_codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS)); const int32_t _samplesPerChip = (_cboc == true) ? 12 : 2; const uint32_t delay = ((static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / GALILEO_E1_B_CODE_LENGTH_CHIPS; galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip const uint32_t _codeLength = _samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS; std::vector _signal_E1(_codeLength); if (_cboc == true) { galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); // generate cboc 12 samples per chip } else { std::vector _signal_E1_int(static_cast(_codeLength)); galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips); // generate sinboc(1,1) 2 samples per chip for (uint32_t ii = 0; ii < _codeLength; ++ii) { _signal_E1[ii] = static_cast(_signal_E1_int[ii]); } } if (_fs != _samplesPerChip * _codeFreqBasis) { std::vector _resampled_signal(_samplesPerCode); resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs); // resamples code to fs _signal_E1 = std::move(_resampled_signal); } if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag) { std::vector _signal_E1C_secondary(static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode); for (uint32_t i = 0; i < static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); i++) { for (uint32_t k = 0; k < _samplesPerCode; k++) { _signal_E1C_secondary[i * _samplesPerCode + k] = _signal_E1[k] * (GALILEO_E1_C_SECONDARY_CODE[i] == '0' ? 1.0F : -1.0F); } } _samplesPerCode *= static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); _signal_E1 = std::move(_signal_E1C_secondary); } for (uint32_t i = 0; i < _samplesPerCode; i++) { _dest[(i + delay) % _samplesPerCode] = _signal_E1[i]; } } void galileo_e1_code_gen_complex_sampled(gsl::span> _dest, const std::array& _Signal, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, bool _secondary_flag) { std::string _galileo_signal = _Signal.data(); const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_CPS; // Hz auto _samplesPerCode = static_cast(static_cast(_fs) / (static_cast(_codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS)); if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag) { _samplesPerCode *= static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); } std::vector real_code(_samplesPerCode); galileo_e1_code_gen_float_sampled(real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag); for (uint32_t ii = 0; ii < _samplesPerCode; ++ii) { _dest[ii] = std::complex(real_code[ii], 0.0F); } } void galileo_e1_code_gen_float_sampled(gsl::span _dest, const std::array& _Signal, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) { galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false); } void galileo_e1_code_gen_complex_sampled(gsl::span> _dest, const std::array& _Signal, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) { galileo_e1_code_gen_complex_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false); }