/*! * \file gps_l2_m_pcps_acquisition.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for * GPS L2 M signals * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l2_m_pcps_acquisition.h" #include "configuration_interface.h" #include "gps_l2c_signal.h" #include "GPS_L2C.h" #include "gnss_sdr_flags.h" #include "acq_conf.h" #include #include using google::LogMessage; GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition( ConfigurationInterface* configuration, const std::string& role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { Acq_Conf acq_parameters = Acq_Conf(); configuration_ = configuration; std::string default_item_type = "gr_complex"; std::string default_dump_filename = "./acquisition.mat"; LOG(INFO) << "role " << role; item_type_ = configuration_->property(role + ".item_type", default_item_type); //float pfa = configuration_->property(role + ".pfa", 0.0); int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); acq_parameters.fs_in = fs_in_; acq_parameters.samples_per_chip = static_cast(ceil((1.0 / GPS_L2_M_CODE_RATE_HZ) * static_cast(acq_parameters.fs_in))); dump_ = configuration_->property(role + ".dump", false); acq_parameters.dump = dump_; acq_parameters.dump_channel = configuration_->property(role + ".dump_channel", 0); blocking_ = configuration_->property(role + ".blocking", true); acq_parameters.blocking = blocking_; doppler_max_ = configuration->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; acq_parameters.doppler_max = doppler_max_; bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); acq_parameters.bit_transition_flag = bit_transition_flag_; use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; max_dwells_ = configuration_->property(role + ".max_dwells", 1); acq_parameters.max_dwells = max_dwells_; dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); acq_parameters.dump_filename = dump_filename_; //--- Find number of samples per spreading code ------------------------- acq_parameters.samples_per_ms = static_cast(fs_in_) * 0.001; acq_parameters.ms_per_code = 20; acq_parameters.sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", acq_parameters.ms_per_code); if ((acq_parameters.sampled_ms % acq_parameters.ms_per_code) != 0) { LOG(WARNING) << "Parameter coherent_integration_time_ms should be a multiple of 20. Setting it to 20"; acq_parameters.sampled_ms = acq_parameters.ms_per_code; } code_length_ = acq_parameters.ms_per_code * acq_parameters.samples_per_ms; vector_length_ = acq_parameters.sampled_ms * acq_parameters.samples_per_ms * (acq_parameters.bit_transition_flag ? 2 : 1); code_ = new gr_complex[vector_length_]; if (item_type_ == "cshort") { item_size_ = sizeof(lv_16sc_t); } else { item_size_ = sizeof(gr_complex); } acq_parameters.samples_per_code = acq_parameters.samples_per_ms * static_cast(GPS_L2_M_PERIOD * 1000.0); acq_parameters.it_size = item_size_; acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false); acquisition_ = pcps_make_acquisition(acq_parameters); DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; if (item_type_ == "cbyte") { cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); float_to_complex_ = gr::blocks::float_to_complex::make(); } channel_ = 0; threshold_ = 0.0; doppler_step_ = 0; gnss_synchro_ = nullptr; num_codes_ = acq_parameters.sampled_ms / acq_parameters.ms_per_code; if (in_streams_ > 1) { LOG(ERROR) << "This implementation only supports one input stream"; } if (out_streams_ > 0) { LOG(ERROR) << "This implementation does not provide an output stream"; } } GpsL2MPcpsAcquisition::~GpsL2MPcpsAcquisition() { delete[] code_; } void GpsL2MPcpsAcquisition::stop_acquisition() { } void GpsL2MPcpsAcquisition::set_channel(unsigned int channel) { channel_ = channel; acquisition_->set_channel(channel_); } void GpsL2MPcpsAcquisition::set_threshold(float threshold) { float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0); if (pfa == 0.0) { pfa = configuration_->property(role_ + ".pfa", 0.0); } if (pfa == 0.0) { threshold_ = threshold; } else { threshold_ = calculate_threshold(pfa); } DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_; acquisition_->set_threshold(threshold_); } void GpsL2MPcpsAcquisition::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; acquisition_->set_doppler_max(doppler_max_); } // Be aware that Doppler step should be set to 2/(3T) Hz, where T is the coherent integration time (GPS L2 period is 0.02s) // Doppler bin minimum size= 33 Hz void GpsL2MPcpsAcquisition::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; acquisition_->set_doppler_step(doppler_step_); } void GpsL2MPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; acquisition_->set_gnss_synchro(gnss_synchro_); } signed int GpsL2MPcpsAcquisition::mag() { return acquisition_->mag(); } void GpsL2MPcpsAcquisition::init() { acquisition_->init(); //set_local_code(); } void GpsL2MPcpsAcquisition::set_local_code() { std::complex* code = new std::complex[code_length_]; gps_l2c_m_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_); for (unsigned int i = 0; i < num_codes_; i++) { memcpy(&(code_[i * code_length_]), code, sizeof(gr_complex) * code_length_); } acquisition_->set_local_code(code_); delete[] code; } void GpsL2MPcpsAcquisition::reset() { acquisition_->set_active(true); } void GpsL2MPcpsAcquisition::set_state(int state) { acquisition_->set_state(state); } float GpsL2MPcpsAcquisition::calculate_threshold(float pfa) { //Calculate the threshold unsigned int frequency_bins = 0; for (int doppler = static_cast(-doppler_max_); doppler <= static_cast(doppler_max_); doppler += doppler_step_) { frequency_bins++; } DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa; unsigned int ncells = vector_length_ * frequency_bins; double exponent = 1.0 / static_cast(ncells); double val = pow(1.0 - pfa, exponent); double lambda = double(vector_length_); boost::math::exponential_distribution mydist(lambda); float threshold = static_cast(quantile(mydist, val)); return threshold; } void GpsL2MPcpsAcquisition::connect(gr::top_block_sptr top_block) { if (item_type_ == "gr_complex") { // nothing to connect } else if (item_type_ == "cshort") { // nothing to connect } else if (item_type_ == "cbyte") { // Since a byte-based acq implementation is not available, // we just convert cshorts to gr_complex top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(float_to_complex_, 0, acquisition_, 0); } else { LOG(WARNING) << item_type_ << " unknown acquisition item type"; } } void GpsL2MPcpsAcquisition::disconnect(gr::top_block_sptr top_block) { if (item_type_ == "gr_complex") { // nothing to disconnect } else if (item_type_ == "cshort") { // nothing to disconnect } else if (item_type_ == "cbyte") { top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(float_to_complex_, 0, acquisition_, 0); } else { LOG(WARNING) << item_type_ << " unknown acquisition item type"; } } gr::basic_block_sptr GpsL2MPcpsAcquisition::get_left_block() { if (item_type_ == "gr_complex") { return acquisition_; } else if (item_type_ == "cshort") { return acquisition_; } else if (item_type_ == "cbyte") { return cbyte_to_float_x2_; } else { LOG(WARNING) << item_type_ << " unknown acquisition item type"; return nullptr; } } gr::basic_block_sptr GpsL2MPcpsAcquisition::get_right_block() { return acquisition_; }