/*! * \file galileo_e1_pcps_ambiguous_acquisition.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for * Galileo E1 Signals * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e1_pcps_ambiguous_acquisition_fpga.h" #include "configuration_interface.h" #include "galileo_e1_signal_processing.h" #include "Galileo_E1.h" #include "gnss_sdr_flags.h" #include #include #include using google::LogMessage; GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga( ConfigurationInterface* configuration, const std::string& role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { //printf("top acq constructor start\n"); pcpsconf_fpga_t acq_parameters; configuration_ = configuration; std::string default_item_type = "gr_complex"; std::string default_dump_filename = "./acquisition.mat"; DLOG(INFO) << "role " << role; // item_type_ = configuration_->property(role + ".item_type", default_item_type); int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); int64_t fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); acq_parameters.fs_in = fs_in; //if_ = configuration_->property(role + ".if", 0); //acq_parameters.freq = if_; // dump_ = configuration_->property(role + ".dump", false); // acq_parameters.dump = dump_; // blocking_ = configuration_->property(role + ".blocking", true); // acq_parameters.blocking = blocking_; doppler_max_ = configuration_->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; acq_parameters.doppler_max = doppler_max_; //unsigned int sampled_ms = 4; //acq_parameters.sampled_ms = sampled_ms; unsigned int sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 4); acq_parameters.sampled_ms = sampled_ms; // bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); // acq_parameters.bit_transition_flag = bit_transition_flag_; // use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions // acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false); //will be true in future versions // max_dwells_ = configuration_->property(role + ".max_dwells", 1); // acq_parameters.max_dwells = max_dwells_; // dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); // acq_parameters.dump_filename = dump_filename_; //--- Find number of samples per spreading code (4 ms) ----------------- unsigned int code_length = static_cast(std::round(static_cast(fs_in) / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS))); //acq_parameters.samples_per_code = code_length_; //int samples_per_ms = static_cast(std::round(static_cast(fs_in_) * 0.001)); //acq_parameters.samples_per_ms = samples_per_ms; //unsigned int vector_length = sampled_ms * samples_per_ms; // if (bit_transition_flag_) // { // vector_length_ *= 2; // } //printf("fs_in = %d\n", fs_in); //printf("Galileo_E1_B_CODE_LENGTH_CHIPS = %f\n", Galileo_E1_B_CODE_LENGTH_CHIPS); //printf("Galileo_E1_CODE_CHIP_RATE_HZ = %f\n", Galileo_E1_CODE_CHIP_RATE_HZ); //printf("acq adapter code_length = %d\n", code_length); acq_parameters.code_length = code_length; // The FPGA can only use FFT lengths that are a power of two. float nbits = ceilf(log2f((float)code_length)); unsigned int nsamples_total = pow(2, nbits); unsigned int vector_length = nsamples_total; //printf("acq adapter nsamples_total (= vector_length) = %d\n", vector_length); unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 0); acq_parameters.select_queue_Fpga = select_queue_Fpga; std::string default_device_name = "/dev/uio0"; std::string device_name = configuration_->property(role + ".devicename", default_device_name); acq_parameters.device_name = device_name; acq_parameters.samples_per_ms = nsamples_total / sampled_ms; acq_parameters.samples_per_code = nsamples_total; // compute all the GALILEO E1 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time // a channel is assigned) gr::fft::fft_complex* fft_if = new gr::fft::fft_complex(nsamples_total, true); // Direct FFT std::complex* code = new std::complex[nsamples_total]; // buffer for the local code gr_complex* fft_codes_padded = static_cast(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_all_fft_codes_ = new lv_16sc_t[nsamples_total * Galileo_E1_NUMBER_OF_CODES]; // memory containing all the possible fft codes for PRN 0 to 32 float max; // temporary maxima search //int tmp_re, tmp_im; for (unsigned int PRN = 1; PRN <= Galileo_E1_NUMBER_OF_CODES; PRN++) { //code_ = new gr_complex[vector_length_]; bool cboc = false; // cboc is set to 0 when using the FPGA //std::complex* code = new std::complex[code_length_]; if (acquire_pilot_ == true) { //printf("yes acquiring pilot!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1\n"); //set local signal generator to Galileo E1 pilot component (1C) char pilot_signal[3] = "1C"; galileo_e1_code_gen_complex_sampled(code, pilot_signal, cboc, PRN, fs_in, 0, false); } else { char data_signal[3] = "1B"; galileo_e1_code_gen_complex_sampled(code, data_signal, cboc, PRN, fs_in, 0, false); } // for (unsigned int i = 0; i < sampled_ms / 4; i++) // { // //memcpy(&(code_[i * code_length_]), code, sizeof(gr_complex) * code_length_); // memcpy(&(d_all_fft_codes_[i * code_length_]), code, sizeof(gr_complex) * code_length_); // } // // debug // char filename[25]; // FILE *fid; // sprintf(filename,"gal_prn%d.txt", PRN); // fid = fopen(filename, "w"); // for (unsigned int kk=0;kk< nsamples_total; kk++) // { // fprintf(fid, "%f\n", code[kk].real()); // fprintf(fid, "%f\n", code[kk].imag()); // } // fclose(fid); // // fill in zero padding for (int s = code_length; s < nsamples_total; s++) { code[s] = std::complex(static_cast(0, 0)); //code[s] = 0; } memcpy(fft_if->get_inbuf(), code, sizeof(gr_complex) * nsamples_total); // copy to FFT buffer fft_if->execute(); // Run the FFT of local code volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values // // debug // char filename[25]; // FILE *fid; // sprintf(filename,"fft_gal_prn%d.txt", PRN); // fid = fopen(filename, "w"); // for (unsigned int kk=0;kk< nsamples_total; kk++) // { // fprintf(fid, "%f\n", fft_codes_padded[kk].real()); // fprintf(fid, "%f\n", fft_codes_padded[kk].imag()); // } // fclose(fid); // normalize the code max = 0; // initialize maximum value for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima { if (std::abs(fft_codes_padded[i].real()) > max) { max = std::abs(fft_codes_padded[i].real()); } if (std::abs(fft_codes_padded[i].imag()) > max) { max = std::abs(fft_codes_padded[i].imag()); } } for (unsigned int i = 0; i < nsamples_total; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs { //d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(4096*fft_codes_padded[i].real() * (pow(2, 3) - 1) / max)), // static_cast(floor(4096*fft_codes_padded[i].imag() * (pow(2, 3) - 1) / max))); // d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(1024*fft_codes_padded[i].real() * (pow(2, 5) - 1) / max)), // static_cast(floor(1024*fft_codes_padded[i].imag() * (pow(2, 5) - 1) / max))); // d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(256*fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)), // static_cast(floor(256*fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max))); // d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(16*fft_codes_padded[i].real() * (pow(2, 11) - 1) / max)), // static_cast(floor(16*fft_codes_padded[i].imag() * (pow(2, 11) - 1) / max))); d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(fft_codes_padded[i].real() * (pow(2, 15) - 1) / max)), static_cast(floor(fft_codes_padded[i].imag() * (pow(2, 15) - 1) / max))); // tmp_re = static_cast(floor(fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)); // tmp_im = static_cast(floor(fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max)); // if (tmp_re > 127) // { // tmp_re = 127; // } // if (tmp_re < -128) // { // tmp_re = -128; // } // if (tmp_im > 127) // { // tmp_im = 127; // } // if (tmp_im < -128) // { // tmp_im = -128; // } // d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(tmp_re), static_cast(tmp_im)); // } // // debug // char filename2[25]; // FILE *fid2; // sprintf(filename2,"fft_gal_prn%d_norm.txt", PRN); // fid2 = fopen(filename2, "w"); // for (unsigned int kk=0;kk< nsamples_total; kk++) // { // fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].real()); // fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].imag()); // } // fclose(fid2); } // for (unsigned int PRN = 1; PRN <= Galileo_E1_NUMBER_OF_CODES; PRN++) // { // // debug // char filename2[25]; // FILE *fid2; // sprintf(filename2,"fft_gal_prn%d_norm_last.txt", PRN); // fid2 = fopen(filename2, "w"); // for (unsigned int kk=0;kk< nsamples_total; kk++) // { // fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].real()); // fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].imag()); // } // fclose(fid2); // } //acq_parameters acq_parameters.all_fft_codes = d_all_fft_codes_; // temporary buffers that we can delete delete[] code; delete fft_if; delete[] fft_codes_padded; acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters); DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")"; // stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); // DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")"; // if (item_type_.compare("cbyte") == 0) // { // cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); // float_to_complex_ = gr::blocks::float_to_complex::make(); // } channel_ = 0; //threshold_ = 0.0; doppler_step_ = 0; gnss_synchro_ = nullptr; //printf("top acq constructor end\n"); } GalileoE1PcpsAmbiguousAcquisitionFpga::~GalileoE1PcpsAmbiguousAcquisitionFpga() { //printf("top acq destructor start\n"); //delete[] code_; delete[] d_all_fft_codes_; //printf("top acq destructor end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::stop_acquisition() { } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_channel(unsigned int channel) { //printf("top acq set channel start\n"); channel_ = channel; acquisition_fpga_->set_channel(channel_); //printf("top acq set channel end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_threshold(float threshold) { //printf("top acq set threshold start\n"); // the .pfa parameter and the threshold calculation is only used for the CFAR algorithm. // We don't use the CFAR algorithm in the FPGA. Therefore the threshold is set as such. // float pfa = configuration_->property(role_ + boost::lexical_cast(channel_) + ".pfa", 0.0); // // if (pfa == 0.0) pfa = configuration_->property(role_ + ".pfa", 0.0); // // if (pfa == 0.0) // { // threshold_ = threshold; // } // else // { // threshold_ = calculate_threshold(pfa); // } DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold; acquisition_fpga_->set_threshold(threshold); // acquisition_fpga_->set_threshold(threshold_); //printf("top acq set threshold end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_doppler_max(unsigned int doppler_max) { //printf("top acq set doppler max start\n"); doppler_max_ = doppler_max; acquisition_fpga_->set_doppler_max(doppler_max_); //printf("top acq set doppler max end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_doppler_step(unsigned int doppler_step) { //printf("top acq set doppler step start\n"); doppler_step_ = doppler_step; acquisition_fpga_->set_doppler_step(doppler_step_); //printf("top acq set doppler step end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { //printf("top acq set gnss synchro start\n"); gnss_synchro_ = gnss_synchro; acquisition_fpga_->set_gnss_synchro(gnss_synchro_); //printf("top acq set gnss synchro end\n"); } signed int GalileoE1PcpsAmbiguousAcquisitionFpga::mag() { // printf("top acq mag start\n"); return acquisition_fpga_->mag(); //printf("top acq mag end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::init() { // printf("top acq init start\n"); acquisition_fpga_->init(); // printf("top acq init end\n"); //set_local_code(); } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_local_code() { // printf("top acq set local code start\n"); // bool cboc = configuration_->property( // "Acquisition" + boost::lexical_cast(channel_) + ".cboc", false); // // std::complex* code = new std::complex[code_length_]; // // if (acquire_pilot_ == true) // { // //set local signal generator to Galileo E1 pilot component (1C) // char pilot_signal[3] = "1C"; // galileo_e1_code_gen_complex_sampled(code, pilot_signal, // cboc, gnss_synchro_->PRN, fs_in_, 0, false); // } // else // { // galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, // cboc, gnss_synchro_->PRN, fs_in_, 0, false); // } // // // for (unsigned int i = 0; i < sampled_ms_ / 4; i++) // { // memcpy(&(code_[i * code_length_]), code, sizeof(gr_complex) * code_length_); // } //acquisition_fpga_->set_local_code(code_); acquisition_fpga_->set_local_code(); // delete[] code; // printf("top acq set local code end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::reset() { // printf("top acq reset start\n"); acquisition_fpga_->set_active(true); // printf("top acq reset end\n"); } void GalileoE1PcpsAmbiguousAcquisitionFpga::set_state(int state) { // printf("top acq set state start\n"); acquisition_fpga_->set_state(state); // printf("top acq set state end\n"); } //float GalileoE1PcpsAmbiguousAcquisitionFpga::calculate_threshold(float pfa) //{ // unsigned int frequency_bins = 0; // for (int doppler = static_cast(-doppler_max_); doppler <= static_cast(doppler_max_); doppler += doppler_step_) // { // frequency_bins++; // } // // DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa; // // unsigned int ncells = vector_length_ * frequency_bins; // double exponent = 1 / static_cast(ncells); // double val = pow(1.0 - pfa, exponent); // double lambda = double(vector_length_); // boost::math::exponential_distribution mydist(lambda); // float threshold = static_cast(quantile(mydist, val)); // // return threshold; //} void GalileoE1PcpsAmbiguousAcquisitionFpga::connect(gr::top_block_sptr top_block) { // printf("top acq connect\n"); // if (item_type_.compare("gr_complex") == 0) // { // top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cshort") == 0) // { // top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cbyte") == 0) // { // top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); // top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); // top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); // top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else // { // LOG(WARNING) << item_type_ << " unknown acquisition item type"; // } // nothing to connect } void GalileoE1PcpsAmbiguousAcquisitionFpga::disconnect(gr::top_block_sptr top_block) { // if (item_type_.compare("gr_complex") == 0) // { // top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cshort") == 0) // { // top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else if (item_type_.compare("cbyte") == 0) // { // // Since a byte-based acq implementation is not available, // // we just convert cshorts to gr_complex // top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); // top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); // top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); // top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0); // } // else // { // LOG(WARNING) << item_type_ << " unknown acquisition item type"; // } // nothing to disconnect // printf("top acq disconnect\n"); } gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisitionFpga::get_left_block() { // printf("top acq get left block start\n"); // if (item_type_.compare("gr_complex") == 0) // { // return stream_to_vector_; // } // else if (item_type_.compare("cshort") == 0) // { // return stream_to_vector_; // } // else if (item_type_.compare("cbyte") == 0) // { // return cbyte_to_float_x2_; // } // else // { // LOG(WARNING) << item_type_ << " unknown acquisition item type"; return nullptr; // } // printf("top acq get left block end\n"); } gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisitionFpga::get_right_block() { // printf("top acq get right block start\n"); return acquisition_fpga_; // printf("top acq get right block end\n"); }