/*! * \file acquisition_dump_reader.cc * \brief Helper file for unit testing * \authors Carles Fernandez-Prades, 2017. cfernandez(at)cttc.es * Antonio Ramos, 2018. antonio.ramos(at)cttc.es * * * ----------------------------------------------------------------------------- * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "acquisition_dump_reader.h" #include #include #include #include bool Acquisition_Dump_Reader::read_binary_acq() { mat_t* matfile = Mat_Open(d_dump_filename.c_str(), MAT_ACC_RDONLY); if (matfile == nullptr) { std::cout << "¡¡¡Unreachable Acquisition dump file!!!\n"; return false; } matvar_t* var_ = Mat_VarRead(matfile, "acq_grid"); if (var_ == nullptr) { std::cout << "¡¡¡Unreachable grid variable into Acquisition dump file!!!\n"; Mat_Close(matfile); return false; } if (var_->rank != 2) { std::cout << "Invalid Acquisition dump file: rank error\n"; Mat_VarFree(var_); Mat_Close(matfile); return false; } if ((var_->dims[0] != d_samples_per_code) or (var_->dims[1] != d_num_doppler_bins)) { std::cout << "Invalid Acquisition dump file: dimension matrix error\n"; if (var_->dims[0] != d_samples_per_code) { std::cout << "Expected " << d_samples_per_code << " samples per code. Obtained " << var_->dims[0] << '\n'; } if (var_->dims[1] != d_num_doppler_bins) { std::cout << "Expected " << d_num_doppler_bins << " Doppler bins. Obtained " << var_->dims[1] << '\n'; } Mat_VarFree(var_); Mat_Close(matfile); return false; } if (var_->data_type != MAT_T_SINGLE) { std::cout << "Invalid Acquisition dump file: data type error\n"; Mat_VarFree(var_); Mat_Close(matfile); return false; } matvar_t* var2_ = Mat_VarRead(matfile, "doppler_max"); d_doppler_max = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "doppler_step"); d_doppler_step = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "input_power"); input_power = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "acq_doppler_hz"); acq_doppler_hz = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "acq_delay_samples"); acq_delay_samples = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "test_statistic"); test_statistic = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "threshold"); threshold = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "sample_counter"); sample_counter = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "d_positive_acq"); positive_acq = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "num_dwells"); num_dwells = *static_cast(var2_->data); Mat_VarFree(var2_); var2_ = Mat_VarRead(matfile, "PRN"); PRN = *static_cast(var2_->data); Mat_VarFree(var2_); std::vector >::iterator it1; std::vector::iterator it2; auto* aux = static_cast(var_->data); int k = 0; float normalization_factor = std::pow(d_samples_per_code, 4) * input_power; for (it1 = mag.begin(); it1 != mag.end(); it1++) { for (it2 = it1->begin(); it2 != it1->end(); it2++) { *it2 = static_cast(aux[k]) / normalization_factor; k++; } } Mat_VarFree(var_); Mat_Close(matfile); return true; } Acquisition_Dump_Reader::Acquisition_Dump_Reader(const std::string& basename, int channel, int execution) { unsigned int sat_ = 0; unsigned int doppler_max_ = 0; unsigned int doppler_step_ = 0; unsigned int samples_per_code_ = 0; mat_t* matfile = Mat_Open(d_dump_filename.c_str(), MAT_ACC_RDONLY); if (matfile != nullptr) { matvar_t* var_ = Mat_VarRead(matfile, "doppler_max"); doppler_max_ = *static_cast(var_->data); Mat_VarFree(var_); var_ = Mat_VarRead(matfile, "doppler_step"); doppler_step_ = *static_cast(var_->data); Mat_VarFree(var_); var_ = Mat_VarRead(matfile, "PRN"); sat_ = *static_cast(var_->data); Mat_VarFree(var_); var_ = Mat_VarRead(matfile, "grid"); samples_per_code_ = var_->dims[0]; Mat_VarFree(var_); Mat_Close(matfile); } else { std::cout << "¡¡¡Unreachable Acquisition dump file!!!\n"; } acq_doppler_hz = 0.0; acq_delay_samples = 0.0; test_statistic = 0.0; input_power = 0.0; threshold = 0.0; positive_acq = 0; sample_counter = 0; PRN = 0; d_sat = 0; d_doppler_max = doppler_max_; d_doppler_step = doppler_step_; d_samples_per_code = samples_per_code_; d_num_doppler_bins = 0; num_dwells = 0; *this = Acquisition_Dump_Reader(basename, sat_, doppler_max_, doppler_step_, samples_per_code_, channel, execution); } Acquisition_Dump_Reader::Acquisition_Dump_Reader(const std::string& basename, unsigned int sat, unsigned int doppler_max, unsigned int doppler_step, unsigned int samples_per_code, int channel, int execution) { d_basename = basename; d_sat = sat; d_doppler_max = doppler_max; d_doppler_step = doppler_step; d_samples_per_code = samples_per_code; acq_doppler_hz = 0.0; acq_delay_samples = 0.0; test_statistic = 0.0; input_power = 0.0; threshold = 0.0; positive_acq = 0; sample_counter = 0; num_dwells = 0; PRN = 0; if (d_doppler_step == 0) { d_doppler_step = 1; } d_num_doppler_bins = static_cast(ceil(static_cast(static_cast(d_doppler_max) - static_cast(-d_doppler_max)) / static_cast(d_doppler_step))); std::vector > mag_aux(d_num_doppler_bins, std::vector(d_samples_per_code)); mag = mag_aux; d_dump_filename = d_basename + "_ch_" + std::to_string(channel) + "_" + std::to_string(execution) + "_sat_" + std::to_string(d_sat) + ".mat"; for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { doppler.push_back(-static_cast(d_doppler_max) + d_doppler_step * doppler_index); } for (unsigned int k = 0; k < d_samples_per_code; k++) { samples.push_back(k); } } // Copy constructor Acquisition_Dump_Reader::Acquisition_Dump_Reader(const Acquisition_Dump_Reader& other) noexcept { *this = other; } // Copy assignment operator Acquisition_Dump_Reader& Acquisition_Dump_Reader::operator=(const Acquisition_Dump_Reader& rhs) { // Only do assignment if RHS is a different object from this. if (this != &rhs) { *this = rhs; } return *this; } // Move constructor Acquisition_Dump_Reader::Acquisition_Dump_Reader(Acquisition_Dump_Reader&& other) noexcept { *this = std::move(other); } // Move assignment operator Acquisition_Dump_Reader& Acquisition_Dump_Reader::operator=(Acquisition_Dump_Reader&& other) noexcept { if (this != &other) { *this = other; } return *this; }