/*! * \file glonass_l1_signal_processing.cc * \brief This class implements various functions for GLONASS L1 CA signals * \author Javier Arribas, 2011. jarribas(at)cttc.es * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ------------------------------------------------------------------------- */ #include "glonass_l1_signal_processing.h" #include #include auto auxCeil = [](float x) { return static_cast(static_cast((x) + 1)); }; void glonass_l1_ca_code_gen_complex(gsl::span> _dest, uint32_t _chip_shift) { const uint32_t _code_length = 511; std::bitset<_code_length> G1{}; auto G1_register = std::bitset<9>{}.set(); // All true bool feedback1; bool aux; uint32_t delay; uint32_t lcv; uint32_t lcv2; /* Generate G1 Register */ for (lcv = 0; lcv < _code_length; lcv++) { G1[lcv] = G1_register[2]; feedback1 = G1_register[4] xor G1_register[0]; for (lcv2 = 0; lcv2 < 8; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; } G1_register[8] = feedback1; } /* Generate PRN from G1 Register */ for (lcv = 0; lcv < _code_length; lcv++) { aux = G1[lcv]; if (aux == true) { _dest[lcv] = std::complex(1, 0); } else { _dest[lcv] = std::complex(-1, 0); } } /* Set the delay */ delay = _code_length; delay += _chip_shift; delay %= _code_length; /* Generate PRN from G1 and G2 Registers */ for (lcv = 0; lcv < _code_length; lcv++) { aux = G1[(lcv + _chip_shift) % _code_length]; if (aux == true) { _dest[lcv] = std::complex(1, 0); } else { _dest[lcv] = std::complex(-1, 0); } delay++; delay %= _code_length; } } /* * Generates complex GLONASS L1 C/A code for the desired SV ID and sampled to specific sampling frequency */ void glonass_l1_ca_code_gen_complex_sampled(gsl::span> _dest, int32_t _fs, uint32_t _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book std::array, 511> _code{}; int32_t _samplesPerCode; int32_t _codeValueIndex; float _ts; float _tc; float aux; const int32_t _codeFreqBasis = 511000; // Hz const int32_t _codeLength = 511; // --- Find number of samples per spreading code --------------------------- _samplesPerCode = static_cast(static_cast(_fs) / (static_cast(_codeFreqBasis) / static_cast(_codeLength))); // --- Find time constants ------------------------------------------------- _ts = 1.0 / static_cast(_fs); // Sampling period in sec _tc = 1.0 / static_cast(_codeFreqBasis); // C/A chip period in sec glonass_l1_ca_code_gen_complex(_code, _chip_shift); // generate C/A code 1 sample per chip for (int32_t i = 0; i < _samplesPerCode; i++) { // === Digitizing ================================================== // --- Make index array to read C/A code values -------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). aux = (_ts * (i + 1)) / _tc; _codeValueIndex = auxCeil(aux) - 1; // --- Make the digitized version of the C/A code ------------------ // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == _samplesPerCode - 1) { // --- Correct the last index (due to number rounding issues) ----------- _dest[i] = _code[_codeLength - 1]; } else { _dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample } } }