/*! * \file galileo_e5_signal_processing.cc * \brief This library implements various functions for Galileo E5 signals such * as replica code generation * \author Marc Sales, 2014. marcsales92(at)gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e5_signal_processing.h" #include "Galileo_E5a.h" #include "gnss_signal_processing.h" #include void galileo_e5_a_code_gen_complex_primary(std::complex* _dest, int32_t _prn, const char _Signal[3]) { uint32_t prn = _prn - 1; uint32_t index = 0; int32_t a[4]; if ((_prn < 1) || (_prn > 50)) { return; } if (_Signal[0] == '5' && _Signal[1] == 'Q') { for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1; i++) { hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index] = std::complex(0.0, float(a[0])); _dest[index + 1] = std::complex(0.0, float(a[1])); _dest[index + 2] = std::complex(0.0, float(a[2])); _dest[index + 3] = std::complex(0.0, float(a[3])); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1)); _dest[index] = std::complex(float(0.0), a[0]); _dest[index + 1] = std::complex(float(0.0), a[1]); } else if (_Signal[0] == '5' && _Signal[1] == 'I') { for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++) { hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); _dest[index] = std::complex(float(a[0]), 0.0); _dest[index + 1] = std::complex(float(a[1]), 0.0); _dest[index + 2] = std::complex(float(a[2]), 0.0); _dest[index + 3] = std::complex(float(a[3]), 0.0); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1)); _dest[index] = std::complex(float(a[0]), 0.0); _dest[index + 1] = std::complex(float(a[1]), 0.0); } else if (_Signal[0] == '5' && _Signal[1] == 'X') { int32_t b[4]; for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++) { hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index] = std::complex(float(a[0]), float(b[0])); _dest[index + 1] = std::complex(float(a[1]), float(b[1])); _dest[index + 2] = std::complex(float(a[2]), float(b[2])); _dest[index + 3] = std::complex(float(a[3]), float(b[3])); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1)); hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1)); _dest[index] = std::complex(float(a[0]), float(b[0])); _dest[index + 1] = std::complex(float(a[1]), float(b[1])); } } void galileo_e5_a_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], uint32_t _prn, int32_t _fs, uint32_t _chip_shift) { uint32_t _samplesPerCode; uint32_t delay; const uint32_t _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS; const int32_t _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; auto* _code = new std::complex[_codeLength](); galileo_e5_a_code_gen_complex_primary(_code, _prn, _Signal); _samplesPerCode = static_cast(static_cast(_fs) / (static_cast(_codeFreqBasis) / static_cast(_codeLength))); delay = ((_codeLength - _chip_shift) % _codeLength) * _samplesPerCode / _codeLength; if (_fs != _codeFreqBasis) { std::complex* _resampled_signal; if (posix_memalign(reinterpret_cast(&_resampled_signal), 16, _samplesPerCode * sizeof(gr_complex)) == 0) { }; resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); // resamples code to fs delete[] _code; _code = _resampled_signal; } for (uint32_t i = 0; i < _samplesPerCode; i++) { _dest[(i + delay) % _samplesPerCode] = _code[i]; } delete[] _code; }