; This is a GNSS-SDR configuration file ; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/ ; SPDX-License-Identifier: GPL-3.0-or-later ; SPDX-FileCopyrightText: (C) 2010-2020 (see AUTHORS file for a list of contributors) [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second]. ;GNSS-SDR.internal_fs_sps=6826700 GNSS-SDR.internal_fs_sps=2560000 ;GNSS-SDR.internal_fs_sps=4096000 ;GNSS-SDR.internal_fs_sps=5120000 ;######### SIGNAL_SOURCE CONFIG ############ ;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] SignalSource.implementation=Nsr_File_Signal_Source ;#filename: path to file with the captured GNSS signal samples to be processed SignalSource.filename=/home/javier/signals/ifen/E1L1_FE0_Band0.stream ; <- PUT YOUR FILE HERE ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. SignalSource.item_type=byte ;#sampling_frequency: Original Signal sampling frequency in [Hz] SignalSource.sampling_frequency=20480000 ;#freq: RF front-end center frequency in [Hz] SignalSource.freq=1575420000 ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. SignalSource.samples=0 ;#repeat: Repeat the processing file. Disable this option in this version SignalSource.repeat=false ;#dump: Dump the Signal source data to a file. Disable this option in this version SignalSource.dump=false SignalSource.dump_filename=./signal_source.dat ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. ; it helps to not overload the CPU, but the processing time will be longer. SignalSource.enable_throttle_control=false ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner.implementation=Signal_Conditioner ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. ;#implementation: [Pass_Through] disables this block DataTypeAdapter.implementation=Pass_Through DataTypeAdapter.item_type=float ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation ;# that shifts IF down to zero Hz. InputFilter.implementation=Freq_Xlating_Fir_Filter ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=./input_filter.dat ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse ;#reponse given a set of band edges, the desired reponse on those bands, ;#and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. InputFilter.input_item_type=float ;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 InputFilter.band1_end=0.45 InputFilter.band2_begin=0.55 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;# Original sampling frequency stored in the signal file InputFilter.sampling_frequency=20480000 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.IF=5499998.47412109 ;# Decimation factor after the frequency tranaslating block InputFilter.decimation_factor=8 ;######### RESAMPLER CONFIG ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neighbourhood interpolation Resampler.implementation=Pass_Through ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available GPS satellite channels. Channels_1C.count=8 Channels.in_acquisition=1 #Channel.signal=1C ;######### ACQUISITION GLOBAL CONFIG ############ Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition Acquisition_1C.dump=false Acquisition_1C.dump_filename=./acq_dump.dat Acquisition_1C.item_type=gr_complex Acquisition_1C.if=0 Acquisition_1C.sampled_ms=1 Acquisition_1C.threshold=2.5 ;Acquisition_1C.pfa=0.01 Acquisition_1C.doppler_max=5000 Acquisition_1C.doppler_step=100 ;######### TRACKING GPS CONFIG ############ Tracking_1C.implementation=GPS_L1_CA_Gaussian_Tracking Tracking_1C.item_type=gr_complex Tracking_1C.if=0 Tracking_1C.dump=true Tracking_1C.dump_filename=./epl_tracking_ch_ Tracking_1C.pll_bw_hz=15.0; Tracking_1C.dll_bw_hz=2.0; Tracking_1C.order=3; ;######### TELEMETRY DECODER GPS CONFIG ############ TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder TelemetryDecoder_1C.dump=false TelemetryDecoder_1C.decimation_factor=1; ;######### OBSERVABLES CONFIG ############ ;#implementation: Observables.implementation=Hybrid_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ PVT.implementation=RTKLIB_PVT PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad PVT.output_rate_ms=100 PVT.display_rate_ms=500 PVT.dump_filename=./PVT PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea; PVT.flag_nmea_tty_port=false; PVT.nmea_dump_devname=/dev/pts/4 PVT.flag_rtcm_server=false PVT.flag_rtcm_tty_port=false PVT.rtcm_dump_devname=/dev/pts/1 PVT.dump=true