/*!
* \file geofunctions.h
* \brief A set of coordinate transformations functions and helpers,
* some of them migrated from MATLAB, for geographic information systems.
* \author Javier Arribas, 2018. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GEOFUNCTIONS_H
#define GNSS_SDR_GEOFUNCTIONS_H
#include
arma::mat Skew_symmetric(const arma::vec &a); //!< Calculates skew-symmetric matrix
double WGS84_g0(double Lat_rad);
double WGS84_geocentric_radius(double Lat_geodetic_rad);
/*!
* \brief Transformation of vector dx into topocentric coordinate
* system with origin at x
* Inputs:
* x - vector origin coordinates (in ECEF system [X; Y; Z;])
* dx - vector ([dX; dY; dZ;]).
*
* Outputs:
* D - vector length. Units like the input
* Az - azimuth from north positive clockwise, degrees
* El - elevation angle, degrees
*
* Based on a Matlab function by Kai Borre
*/
int topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx);
/*!
* \brief Subroutine to calculate geodetic coordinates latitude, longitude,
* height given Cartesian coordinates X,Y,Z, and reference ellipsoid
* values semi-major axis (a) and the inverse of flattening (finv).
*
* The output units of angular quantities will be in decimal degrees
* (15.5 degrees not 15 deg 30 min). The output units of h will be the
* same as the units of X,Y,Z,a.
*
* Inputs:
* a - semi-major axis of the reference ellipsoid
* finv - inverse of flattening of the reference ellipsoid
* X,Y,Z - Cartesian coordinates
*
* Outputs:
* dphi - latitude
* dlambda - longitude
* h - height above reference ellipsoid
*
* Based in a Matlab function by Kai Borre
*/
int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z);
arma::mat Gravity_ECEF(const arma::vec &r_eb_e); //!< Calculates acceleration due to gravity resolved about ECEF-frame
/*!
* \brief Conversion of Cartesian coordinates (X,Y,Z) to geographical
* coordinates (latitude, longitude, h) on a selected reference ellipsoid.
*
* Choices of Reference Ellipsoid for Geographical Coordinates
* 0. International Ellipsoid 1924
* 1. International Ellipsoid 1967
* 2. World Geodetic System 1972
* 3. Geodetic Reference System 1980
* 4. World Geodetic System 1984
*/
arma::vec cart2geo(const arma::vec &XYZ, int elipsoid_selection);
arma::vec LLH_to_deg(const arma::vec &LLH);
double degtorad(double angleInDegrees);
double radtodeg(double angleInRadians);
double mstoknotsh(double MetersPerSeconds);
double mstokph(double MetersPerSeconds);
arma::vec CTM_to_Euler(const arma::mat &C);
arma::mat Euler_to_CTM(const arma::vec &eul);
void ECEF_to_Geo(const arma::vec &r_eb_e, const arma::vec &v_eb_e, const arma::mat &C_b_e, arma::vec &LLH, arma::vec &v_eb_n, arma::mat &C_b_n);
/*!
* \brief From Geographic to ECEF coordinates
*
* Inputs:
* LLH latitude (rad), longitude (rad), height (m)
* v_eb_n velocity of body frame w.r.t. ECEF frame, resolved along
* north, east, and down (m/s)
* C_b_n body-to-NED coordinate transformation matrix
*
* Outputs:
* r_eb_e Cartesian position of body frame w.r.t. ECEF frame, resolved
* along ECEF-frame axes (m)
* v_eb_e velocity of body frame w.r.t. ECEF frame, resolved along
* ECEF-frame axes (m/s)
* C_b_e body-to-ECEF-frame coordinate transformation matrix
*
*/
void Geo_to_ECEF(const arma::vec &LLH, const arma::vec &v_eb_n, const arma::mat &C_b_n, arma::vec &r_eb_e, arma::vec &v_eb_e, arma::mat &C_b_e);
/*!
* \brief Converts curvilinear to Cartesian position and velocity
* resolving axes from NED to ECEF
* This function created 11/4/2012 by Paul Groves
*
* Inputs:
* L_b latitude (rad)
* lambda_b longitude (rad)
* h_b height (m)
* v_eb_n velocity of body frame w.r.t. ECEF frame, resolved along
* north, east, and down (m/s)
*
* Outputs:
* r_eb_e Cartesian position of body frame w.r.t. ECEF frame, resolved
* along ECEF-frame axes (m)
* v_eb_e velocity of body frame w.r.t. ECEF frame, resolved along
* ECEF-frame axes (m/s)
*/
void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e);
/*!
* \brief The Haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.
*/
double great_circle_distance(double lat1, double lon1, double lat2, double lon2);
/*!
* \brief Transformation of ECEF (X,Y,Z) to (E,N,U) in UTM, zone 'zone'.
*/
void cart2utm(const arma::vec &r_eb_e, int zone, arma::vec &r_enu);
/*!
* \brief Function finds the UTM zone number for given longitude and latitude.
*/
int findUtmZone(double latitude_deg, double longitude_deg);
/*!
* \brief Clenshaw summation of sinus of argument.
*/
double clsin(const arma::colvec &ar, int degree, double argument);
/*!
* \brief Clenshaw summation of sinus with complex argument.
*/
void clksin(const arma::colvec &ar, int degree, double arg_real, double arg_imag, double *re, double *im);
#endif