/*! * \file pcps_cccwsr_acquisition_cc.cc * \brief This class implements a Parallel Code Phase Search acquisition * with Coherent Channel Combining With Sign Recovery scheme. * \author Marc Molina, 2013. marc.molina.pena(at)gmail.com * * D.Borio, C.O'Driscoll, G.Lachapelle, "Coherent, Noncoherent and * Differentially Coherent Combining Techniques for Acquisition of * New Composite GNSS Signals", IEEE Transactions On Aerospace and * Electronic Systems vol. 45 no. 3, July 2009, section IV * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "pcps_cccwsr_acquisition_cc.h" #include #include #include #include #include #include "control_message_factory.h" #include "GPS_L1_CA.h" //GPS_TWO_PI using google::LogMessage; pcps_cccwsr_acquisition_cc_sptr pcps_cccwsr_make_acquisition_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, bool dump, std::string dump_filename) { return pcps_cccwsr_acquisition_cc_sptr( new pcps_cccwsr_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, samples_per_code, dump, dump_filename)); } pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, bool dump, std::string dump_filename) : gr::block("pcps_cccwsr_acquisition_cc", gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms), gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms)) { this->message_port_register_out(pmt::mp("events")); d_sample_counter = 0; // SAMPLE COUNTER d_active = false; d_state = 0; d_freq = freq; d_fs_in = fs_in; d_samples_per_ms = samples_per_ms; d_samples_per_code = samples_per_code; d_sampled_ms = sampled_ms; d_max_dwells = max_dwells; d_well_count = 0; d_doppler_max = doppler_max; d_fft_size = d_sampled_ms * d_samples_per_ms; d_mag = 0; d_input_power = 0.0; d_num_doppler_bins = 0; d_fft_code_data = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_fft_code_pilot = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_data_correlation = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_pilot_correlation = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_correlation_plus = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_correlation_minus = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_magnitude = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment())); // Direct FFT d_fft_if = new gr::fft::fft_complex(d_fft_size, true); // Inverse FFT d_ifft = new gr::fft::fft_complex(d_fft_size, false); // For dumping samples into a file d_dump = dump; d_dump_filename = dump_filename; d_doppler_resolution = 0; d_threshold = 0; d_doppler_step = 0; d_grid_doppler_wipeoffs = 0; d_gnss_synchro = 0; d_code_phase = 0; d_doppler_freq = 0; d_test_statistics = 0; d_channel = 0; } pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc() { if (d_num_doppler_bins > 0) { for (unsigned int i = 0; i < d_num_doppler_bins; i++) { volk_gnsssdr_free(d_grid_doppler_wipeoffs[i]); } delete[] d_grid_doppler_wipeoffs; } volk_gnsssdr_free(d_fft_code_data); volk_gnsssdr_free(d_fft_code_pilot); volk_gnsssdr_free(d_data_correlation); volk_gnsssdr_free(d_pilot_correlation); volk_gnsssdr_free(d_correlation_plus); volk_gnsssdr_free(d_correlation_minus); volk_gnsssdr_free(d_magnitude); delete d_ifft; delete d_fft_if; if (d_dump) { d_dump_file.close(); } } void pcps_cccwsr_acquisition_cc::set_local_code(std::complex *code_data, std::complex *code_pilot) { // Data code (E1B) memcpy(d_fft_if->get_inbuf(), code_data, sizeof(gr_complex) * d_fft_size); d_fft_if->execute(); // We need the FFT of local code //Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_data, d_fft_if->get_outbuf(), d_fft_size); // Pilot code (E1C) memcpy(d_fft_if->get_inbuf(), code_pilot, sizeof(gr_complex) * d_fft_size); d_fft_if->execute(); // We need the FFT of local code //Conjugate the local code, volk_32fc_conjugate_32fc(d_fft_code_pilot, d_fft_if->get_outbuf(), d_fft_size); } void pcps_cccwsr_acquisition_cc::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_mag = 0.0; d_input_power = 0.0; // Count the number of bins d_num_doppler_bins = 0; for (int doppler = static_cast(-d_doppler_max); doppler <= static_cast(d_doppler_max); doppler += d_doppler_step) { d_num_doppler_bins++; } // Create the carrier Doppler wipeoff signals d_grid_doppler_wipeoffs = new gr_complex *[d_num_doppler_bins]; for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { d_grid_doppler_wipeoffs[doppler_index] = static_cast(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); int doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast(d_fs_in); float _phase[1]; _phase[0] = 0; volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index], -phase_step_rad, _phase, d_fft_size); } } void pcps_cccwsr_acquisition_cc::set_state(int state) { d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; } else if (d_state == 0) { } else { LOG(ERROR) << "State can only be set to 0 or 1"; } } int pcps_cccwsr_acquisition_cc::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items __attribute__((unused))) { int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL switch (d_state) { case 0: { if (d_active) { //restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; } d_sample_counter += d_fft_size * ninput_items[0]; // sample counter consume_each(ninput_items[0]); break; } case 1: { // initialize acquisition algorithm int doppler; uint32_t indext = 0; uint32_t indext_plus = 0; uint32_t indext_minus = 0; float magt = 0.0; float magt_plus = 0.0; float magt_minus = 0.0; const gr_complex *in = reinterpret_cast(input_items[0]); //Get the input samples pointer float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_sample_counter += d_fft_size; // sample counter d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " ,sample stamp: " << d_sample_counter << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step; // 1- Compute the input signal power estimation volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size); d_input_power /= static_cast(d_fft_size); // 2- Doppler frequency search loop for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { // doppler search steps doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); // 3- Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd data code reference (E1B) using SIMD operations // with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_data, d_fft_size); // compute the inverse FFT d_ifft->execute(); // Copy the result of the correlation between wiped--off signal and data code in // d_data_correlation. memcpy(d_data_correlation, d_ifft->get_outbuf(), sizeof(gr_complex) * d_fft_size); // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd pilot code reference (E1C) using SIMD operations // with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_pilot, d_fft_size); // Compute the inverse FFT d_ifft->execute(); // Copy the result of the correlation between wiped--off signal and pilot code in // d_data_correlation. memcpy(d_pilot_correlation, d_ifft->get_outbuf(), sizeof(gr_complex) * d_fft_size); for (unsigned int i = 0; i < d_fft_size; i++) { d_correlation_plus[i] = std::complex( d_data_correlation[i].real() - d_pilot_correlation[i].imag(), d_data_correlation[i].imag() + d_pilot_correlation[i].real()); d_correlation_minus[i] = std::complex( d_data_correlation[i].real() + d_pilot_correlation[i].imag(), d_data_correlation[i].imag() - d_pilot_correlation[i].real()); } volk_32fc_magnitude_squared_32f(d_magnitude, d_correlation_plus, d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_plus, d_magnitude, d_fft_size); magt_plus = d_magnitude[indext_plus] / (fft_normalization_factor * fft_normalization_factor); volk_32fc_magnitude_squared_32f(d_magnitude, d_correlation_minus, d_fft_size); volk_gnsssdr_32f_index_max_32u(&indext_minus, d_magnitude, d_fft_size); magt_minus = d_magnitude[indext_minus] / (fft_normalization_factor * fft_normalization_factor); if (magt_plus >= magt_minus) { magt = magt_plus; indext = indext_plus; } else { magt = magt_minus; indext = indext_minus; } // 4- record the maximum peak and the associated synchronization parameters if (d_mag < magt) { d_mag = magt; d_gnss_synchro->Acq_delay_samples = static_cast(indext % d_samples_per_code); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; } // Record results to file if required if (d_dump) { std::stringstream filename; std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write filename.str(""); filename << "../data/test_statistics_" << d_gnss_synchro->System << "_" << d_gnss_synchro->Signal << "_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.write(reinterpret_cast(d_ifft->get_outbuf()), n); //write directly |abs(x)|^2 in this Doppler bin? d_dump_file.close(); } } // 5- Compute the test statistics and compare to the threshold //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; d_test_statistics = d_mag / d_input_power; // 6- Declare positive or negative acquisition using a message port if (d_test_statistics > d_threshold) { d_state = 2; // Positive acquisition } else if (d_well_count == d_max_dwells) { d_state = 3; // Negative acquisition } consume_each(1); break; } case 2: { // 6.1- Declare positive acquisition using a message port DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += d_fft_size * ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 1; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); break; } case 3: { // 6.2- Declare negative acquisition using a message port DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += d_fft_size * ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 2; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); break; } } return noutput_items; }