/*! * \file galileo_volk_e1_dll_pll_veml_tracking_cc.cc * \brief Implementation of a code DLL + carrier PLL VEML (Very Early * Minus Late) tracking block for Galileo E1 signals * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * Code DLL + carrier PLL according to the algorithms described in: * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkhauser, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_volk_e1_dll_pll_veml_tracking_cc.h" #include #include #include #include #include #include #include #include "gnss_synchro.h" #include "galileo_e1_signal_processing.h" #include "tracking_discriminators.h" #include "lock_detectors.h" #include "Galileo_E1.h" #include "control_message_factory.h" #include "volk_gnsssdr/volk_gnsssdr.h" /*! * \todo Include in definition header file */ #define CN0_ESTIMATION_SAMPLES 20 #define MINIMUM_VALID_CN0 25 #define MAXIMUM_LOCK_FAIL_COUNTER 50 #define CARRIER_LOCK_THRESHOLD 0.85 using google::LogMessage; galileo_volk_e1_dll_pll_veml_tracking_cc_sptr galileo_volk_e1_dll_pll_veml_make_tracking_cc( long if_freq, long fs_in, unsigned int vector_length, boost::shared_ptr queue, bool dump, std::string dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips, float very_early_late_space_chips) { return galileo_volk_e1_dll_pll_veml_tracking_cc_sptr(new galileo_volk_e1_dll_pll_veml_tracking_cc(if_freq, fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips, very_early_late_space_chips)); } void galileo_volk_e1_dll_pll_veml_tracking_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = (int)d_vector_length*2; //set the required available samples in each call } galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_cc( long if_freq, long fs_in, unsigned int vector_length, boost::shared_ptr queue, bool dump, std::string dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips, float very_early_late_space_chips): gr::block("galileo_volk_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { this->set_relative_rate(1.0/vector_length); // initialize internal vars d_queue = queue; d_dump = dump; d_if_freq = if_freq; d_fs_in = fs_in; d_vector_length = vector_length; d_dump_filename = dump_filename; d_code_loop_filter = Tracking_2nd_DLL_filter(Galileo_E1_CODE_PERIOD); d_carrier_loop_filter = Tracking_2nd_PLL_filter(Galileo_E1_CODE_PERIOD); // Initialize tracking ========================================== // Set bandwidth of code and carrier loop filters d_code_loop_filter.set_DLL_BW(dll_bw_hz); d_carrier_loop_filter.set_PLL_BW(pll_bw_hz); // Correlator spacing d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) d_very_early_late_spc_chips = very_early_late_space_chips; // Define very-early-late offset (in chips) // Initialization of local code replica // Get space for a vector with the sinboc(1,1) replica sampled 2x/chip d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)]; /* If an array is partitioned for more than one thread to operate on, * having the sub-array boundaries unaligned to cache lines could lead * to performance degradation. Here we allocate memory * (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes */ d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_very_early_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_early_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_prompt_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_late_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_very_late_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_carr_sign16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); in16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_very_early_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); d_early_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); d_prompt_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); d_late_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); d_very_late_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); d_carr_sign8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); in8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment()); // correlator outputs (scalar) d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); //--- Initializations ------------------------------ // Initial code frequency basis of NCO d_code_freq_chips = (double)Galileo_E1_CODE_CHIP_RATE_HZ; // Residual code phase (in chips) d_rem_code_phase_samples = 0.0; // Residual carrier phase d_rem_carr_phase_rad = 0.0; // sample synchronization d_sample_counter = 0; //d_sample_counter_seconds = 0; d_acq_sample_stamp = 0; d_enable_tracking = false; d_pull_in = false; d_last_seg = 0; d_current_prn_length_samples = (int)d_vector_length; // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; systemName["E"] = std::string("Galileo"); *d_Very_Early=gr_complex(0,0); *d_Early=gr_complex(0,0); *d_Prompt=gr_complex(0,0); *d_Late=gr_complex(0,0); *d_Very_Late=gr_complex(0,0); } void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking() { d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; // DLL/PLL filter initialization d_carrier_loop_filter.initialize(); // initialize the carrier filter d_code_loop_filter.initialize(); // initialize the code filter // generate local reference ALWAYS starting at chip 2 (2 samples per chip) galileo_e1_code_gen_complex_sampled(&d_ca_code[2], d_acquisition_gnss_synchro->Signal, false, d_acquisition_gnss_synchro->PRN, 2*Galileo_E1_CODE_CHIP_RATE_HZ, 0); // Fill head and tail d_ca_code[0] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS)]; d_ca_code[1] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 1)]; d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 2)] = d_ca_code[2]; d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 3)] = d_ca_code[3]; d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0.0; d_rem_carr_phase_rad = 0; d_acc_carrier_phase_rad = 0; d_acc_code_phase_secs = 0; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_current_prn_length_samples = d_vector_length; std::string sys_ = &d_acquisition_gnss_synchro->System; sys = sys_.substr(0, 1); // DEBUG OUTPUT std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; // enable tracking d_pull_in = true; d_enable_tracking = true; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; } void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code() { double tcode_half_chips; float rem_code_phase_half_chips; int associated_chip_index; int code_length_half_chips = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS); double code_phase_step_chips; double code_phase_step_half_chips; int early_late_spc_samples; int very_early_late_spc_samples; int epl_loop_length_samples; // unified loop for VE, E, P, L, VL code vectors code_phase_step_chips = ((double)d_code_freq_chips) / ((double)d_fs_in); code_phase_step_half_chips = (2.0*(double)d_code_freq_chips) / ((double)d_fs_in); rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in); tcode_half_chips = -(double)rem_code_phase_half_chips; early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips); very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips); epl_loop_length_samples = d_current_prn_length_samples + very_early_late_spc_samples*2; //volk_gnsssdr_32fc_s32f_x4_update_local_code_32fc_manual(d_very_early_code, (float) d_very_early_late_spc_chips, (float) code_length_half_chips, (float) code_phase_step_half_chips, (float) tcode_half_chips, d_ca_code, epl_loop_length_samples, "generic"); volk_gnsssdr_32fc_s32f_x4_update_local_code_32fc_manual(d_very_early_code, (float) d_very_early_late_spc_chips, (float) code_length_half_chips, (float) code_phase_step_half_chips, (float) tcode_half_chips, d_ca_code, epl_loop_length_samples, "u_sse4_1"); // float d_very_early_late_spc_chips_multiplied_by_2 = 2*d_very_early_late_spc_chips; // for (int i = 0; i < epl_loop_length_samples; i++) // { // associated_chip_index = 2 + round(fmod(tcode_half_chips - d_very_early_late_spc_chips_multiplied_by_2, code_length_half_chips)); // d_very_early_code[i] = d_ca_code[associated_chip_index]; // tcode_half_chips = tcode_half_chips + code_phase_step_half_chips; // } memcpy(d_early_code, &d_very_early_code[very_early_late_spc_samples - early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_prompt_code, &d_very_early_code[very_early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_late_code, &d_very_early_code[very_early_late_spc_samples + early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_very_late_code, &d_very_early_code[2*very_early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); } void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_carrier() { float phase_rad, phase_step_rad; // Compute the carrier phase step for the K-1 carrier doppler estimation phase_step_rad = (float)GPS_TWO_PI*d_carrier_doppler_hz / (float)d_fs_in; // Initialize the carrier phase with the remanent carrier phase of the K-2 loop phase_rad = d_rem_carr_phase_rad; volk_gnsssdr_s32f_x2_update_local_carrier_32fc_manual(d_carr_sign, phase_rad, phase_step_rad, d_current_prn_length_samples, "generic"); volk_gnsssdr_s32f_x2_update_local_carrier_32fc_manual(d_carr_sign, phase_rad, phase_step_rad, d_current_prn_length_samples, "u_sse2"); volk_gnsssdr_s32f_x2_update_local_carrier_32fc_manual(d_carr_sign, phase_rad, phase_step_rad, d_current_prn_length_samples, "u_avx"); // for(int i = 0; i < d_current_prn_length_samples; i++) // { // d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad)); // phase_rad += phase_step_rad; // } } galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking_cc() { d_dump_file.close(); volk_free(d_very_early_code); volk_free(d_early_code); volk_free(d_prompt_code); volk_free(d_late_code); volk_free(d_very_late_code); volk_free(d_carr_sign); volk_free(d_Very_Early); volk_free(d_Early); volk_free(d_Prompt); volk_free(d_Late); volk_free(d_Very_Late); volk_free(d_very_early_code16); volk_free(d_early_code16); volk_free(d_prompt_code16); volk_free(d_late_code16); volk_free(d_very_late_code16); volk_free(d_carr_sign16); volk_free(in16); volk_free(d_very_early_code8); volk_free(d_early_code8); volk_free(d_prompt_code8); volk_free(d_late_code8); volk_free(d_very_late_code8); volk_free(d_carr_sign8); volk_free(in8); delete[] d_ca_code; delete[] d_Prompt_buffer; } int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { float carr_error_hz; float carr_error_filt_hz; float code_error_chips; float code_error_filt_chips; if (d_enable_tracking == true) { if (d_pull_in == true) { /* * Signal alignment (skip samples until the incoming signal is aligned with local replica) */ int samples_offset; float acq_trk_shif_correction_samples; int acq_to_trk_delay_samples; acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples d_pull_in = false; consume_each(samples_offset); //shift input to perform alignment with local replica return 1; } // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data; // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // Block input data and block output stream pointers const gr_complex* in = (gr_complex*) input_items[0]; Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Generate local code and carrier replicas (using \hat{f}_d(k-1)) update_local_code(); update_local_carrier(); //perform carrier wipe-off and compute Very Early, Early, Prompt, Late and Very Late correlation // d_correlator.Carrier_wipeoff_and_VEPL_volk(d_current_prn_length_samples, // in, // d_carr_sign, // d_very_early_code, // d_early_code, // d_prompt_code, // d_late_code, // d_very_late_code, // d_Very_Early, // d_Early, // d_Prompt, // d_Late, // d_Very_Late, // is_unaligned()); // // volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in, d_carr_sign, d_very_early_code, d_early_code, d_prompt_code, d_late_code, d_very_late_code, d_current_prn_length_samples); // // volk_gnsssdr_32fc_convert_16ic(d_very_early_code16, d_very_early_code, d_current_prn_length_samples); // volk_gnsssdr_32fc_convert_16ic(d_early_code16, d_early_code, d_current_prn_length_samples); // volk_gnsssdr_32fc_convert_16ic(d_prompt_code16, d_prompt_code, d_current_prn_length_samples); // volk_gnsssdr_32fc_convert_16ic(d_late_code16, d_late_code, d_current_prn_length_samples); // volk_gnsssdr_32fc_convert_16ic(d_very_late_code16, d_very_late_code, d_current_prn_length_samples); // volk_gnsssdr_32fc_convert_16ic(in16, in, d_current_prn_length_samples); // volk_gnsssdr_32fc_convert_16ic(d_carr_sign16, d_carr_sign, d_current_prn_length_samples); // // volk_gnsssdr_16ic_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in16, d_carr_sign16, d_very_early_code16, d_early_code16, d_prompt_code16, d_late_code16, d_very_late_code16, d_current_prn_length_samples); volk_gnsssdr_32fc_convert_8ic(d_very_early_code8, d_very_early_code, d_current_prn_length_samples); volk_gnsssdr_32fc_convert_8ic(d_early_code8, d_early_code, d_current_prn_length_samples); volk_gnsssdr_32fc_convert_8ic(d_prompt_code8, d_prompt_code, d_current_prn_length_samples); volk_gnsssdr_32fc_convert_8ic(d_late_code8, d_late_code, d_current_prn_length_samples); volk_gnsssdr_32fc_convert_8ic(d_very_late_code8, d_very_late_code, d_current_prn_length_samples); volk_gnsssdr_32fc_convert_8ic(d_carr_sign8, d_carr_sign, d_current_prn_length_samples); volk_gnsssdr_32fc_s32f_convert_8ic(in8, in, 4, d_current_prn_length_samples); //volk_gnsssdr_8ic_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples); //volk_gnsssdr_8ic_x7_cw_vepl_corr_unsafe_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples); volk_gnsssdr_8ic_x7_cw_vepl_corr_safe_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples); // ################## PLL ########################################################## // PLL discriminator carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI; // Carrier discriminator filter carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); // New carrier Doppler frequency estimation d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; // New code Doppler frequency estimation d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ); //carrier phase accumulator for (K) Doppler estimation d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD; //remnant carrier phase to prevent overflow in the code NCO d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD; d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI); // ################## DLL ########################################################## // DLL discriminator code_error_chips = dll_nc_vemlp_normalized(*d_Very_Early, *d_Early, *d_Late, *d_Very_Late); //[chips/Ti] // Code discriminator filter code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second] //Code phase accumulator float code_error_filt_secs; code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds] //code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*(float)d_fs_in; //[seconds] d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs; // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // keep alignment parameters for the next input buffer double T_chip_seconds; double T_prn_seconds; double T_prn_samples; double K_blk_samples; // Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation T_chip_seconds = 1 / (double)d_code_freq_chips; T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS; T_prn_samples = T_prn_seconds * (double)d_fs_in; K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * (double)d_fs_in; d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt; d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E1_B_CODE_LENGTH_CHIPS); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; } if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; std::unique_ptr cmf(new ControlMessageFactory()); if (d_queue != gr::msg_queue::sptr()) { d_queue->handle(cmf->GetQueueMessage(d_channel, 2)); } d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } } // ########### Output the tracking results to Telemetry block ########## current_synchro_data.Prompt_I = (double)(*d_Prompt).real(); current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag(); // Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!) //compute remnant code phase samples BEFORE the Tracking timestamp //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample //current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + // (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / (double)d_fs_in; // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??) current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_rem_code_phase_samples) / (double)d_fs_in; //compute remnant code phase samples AFTER the Tracking timestamp d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0 current_synchro_data.Code_phase_secs = 0; current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz; *out[0] = current_synchro_data; // ########## DEBUG OUTPUT /*! * \todo The stop timer has to be moved to the signal source! */ // stream to collect cout calls to improve thread safety std::stringstream tmp_str_stream; if (floor(d_sample_counter / d_fs_in) != d_last_seg) { d_last_seg = floor(d_sample_counter / d_fs_in); if (d_channel == 0) { // debug: Second counter in channel 0 tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; std::cout << tmp_str_stream.rdbuf() << std::flush; } tmp_str_stream << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << ", Doppler=" << d_carrier_doppler_hz << " [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; LOG(INFO) << tmp_str_stream.rdbuf() << std::flush; //if (d_channel == 0 || d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock! } } else { // ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled) /*! * \todo The stop timer has to be moved to the signal source! */ // stream to collect cout calls to improve thread safety std::stringstream tmp_str_stream; if (floor(d_sample_counter / d_fs_in) != d_last_seg) { d_last_seg = floor(d_sample_counter / d_fs_in); if (d_channel == 0) { // debug: Second counter in channel 0 tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; std::cout << tmp_str_stream.rdbuf() << std::flush; } } *d_Early = gr_complex(0,0); *d_Prompt = gr_complex(0,0); *d_Late = gr_complex(0,0); Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output stream pointer // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder *out[0] = *d_acquisition_gnss_synchro; } if(d_dump) { // Dump results to file float prompt_I; float prompt_Q; float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL; float tmp_float; double tmp_double; prompt_I = (*d_Prompt).real(); prompt_Q = (*d_Prompt).imag(); tmp_VE = std::abs(*d_Very_Early); tmp_E = std::abs(*d_Early); tmp_P = std::abs(*d_Prompt); tmp_L = std::abs(*d_Late); tmp_VL = std::abs(*d_Very_Late); try { // Dump correlators output d_dump_file.write((char*)&tmp_VE, sizeof(float)); d_dump_file.write((char*)&tmp_E, sizeof(float)); d_dump_file.write((char*)&tmp_P, sizeof(float)); d_dump_file.write((char*)&tmp_L, sizeof(float)); d_dump_file.write((char*)&tmp_VL, sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write((char*)&prompt_I, sizeof(float)); d_dump_file.write((char*)&prompt_Q, sizeof(float)); // PRN start sample stamp d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int)); // accumulated carrier phase d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float)); // carrier and code frequency d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float)); d_dump_file.write((char*)&d_code_freq_chips, sizeof(float)); //PLL commands d_dump_file.write((char*)&carr_error_hz, sizeof(float)); d_dump_file.write((char*)&carr_error_filt_hz, sizeof(float)); //DLL commands d_dump_file.write((char*)&code_error_chips, sizeof(float)); d_dump_file.write((char*)&code_error_filt_chips, sizeof(float)); // CN0 and carrier lock test d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float)); d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float)); // AUX vars (for debug purposes) tmp_float = d_rem_code_phase_samples; d_dump_file.write((char*)&tmp_float, sizeof(float)); tmp_double=(double)(d_sample_counter+d_current_prn_length_samples); d_dump_file.write((char*)&tmp_double, sizeof(double)); } catch (std::ifstream::failure e) { LOG(WARNING) << "Exception writing trk dump file " << e.what() << std::endl; } } consume_each(d_current_prn_length_samples); // this is required for gr_block derivates d_sample_counter += d_current_prn_length_samples; //count for the processed samples //std::cout<<"Galileo tracking output at sample "<(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (std::ifstream::failure e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl; } } } } void galileo_volk_e1_dll_pll_veml_tracking_cc::set_channel_queue(concurrent_queue *channel_internal_queue) { d_channel_internal_queue = channel_internal_queue; } void galileo_volk_e1_dll_pll_veml_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; // Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); //DLOG(INFO) << "Tracking code phase set to " << d_acq_code_phase_samples; //DLOG(INFO) << "Tracking carrier doppler set to " << d_acq_carrier_doppler_hz; //DLOG(INFO) << "Tracking Satellite set to " << d_satellite; }