/*! * \file CN_estimators.cc * \brief Implementation of a library with a set of Carrier to Noise * estimators and lock detectors. SNV_CN0 is a Carrier-to-Noise (CN0) estimator * based on the Signal-to-Noise Variance (SNV) estimator [1]. * Carrier lock detector using normalised estimate of the cosine * of twice the carrier phase error [2]. * [1] Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance * Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver," * IEEE 10th International Symposium on Spread Spectrum Techniques and * Applications, pp.28-30, August 2008. * [2] Van Dierendonck, A.J. (1996), Global Positioning System: Theory and * Applications, * Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024. * Inc.: 329-407. * \author Javier Arribas, 2011. jarribas(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "CN_estimators.h" #include "GPS_L1_CA.h" #include #include /* * Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator: * \f{equation} * \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s}, * \f} * where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power, * \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value, * \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i. * * The SNR value is converted to CN0 [dB-Hz], taking to account the receiver bandwidth and the PRN code gain, using the following formula: * \f{equation} * CN0_{dB}=10*log(\hat{\rho})+10*log(\frac{f_s}{2})-10*log(L_{PRN}), * \f} * where \f$f_s\f$ is the sampling frequency and \f$L_{PRN}\f$ is the PRN sequence length. * */ float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in) { // estimate CN0 using buffered values // MATLAB CODE // Psig=((1/N)*sum(abs(imag(x((n-N+1):n)))))^2; // Ptot=(1/N)*sum(abs(x((n-N+1):n)).^2); // SNR_SNV(count)=Psig/(Ptot-Psig); // CN0_SNV_dB=10*log10(SNR_SNV)+10*log10(BW)-10*log10(PRN_length); float SNR, SNR_dB_Hz; float tmp_abs_imag; float Psig, Ptot; Psig = 0; Ptot = 0; for (int i=0; i