/*! * \file gps_l1_ca_pcps_acquisition_fpga.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface * for GPS L1 C/A signals for the FPGA * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_pcps_acquisition_fpga.h" #include "GPS_L1_CA.h" #include "configuration_interface.h" #include "gnss_sdr_flags.h" #include "gnss_sdr_make_unique.h" #include "gps_sdr_signal_processing.h" #include #include #include // for gr_complex #include // for volk_32fc_conjugate_32fc #include #include // for copy_n #include // for abs, pow, floor #include // for complex GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga( const ConfigurationInterface* configuration, const std::string& role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { pcpsconf_fpga_t acq_parameters; DLOG(INFO) << "role " << role; int64_t fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000); int64_t fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); acq_parameters.repeat_satellite = configuration->property(role + ".repeat_satellite", false); DLOG(INFO) << role << " satellite repeat = " << acq_parameters.repeat_satellite; uint32_t downsampling_factor = configuration->property(role + ".downsampling_factor", 4); acq_parameters.downsampling_factor = downsampling_factor; fs_in = fs_in / downsampling_factor; acq_parameters.fs_in = fs_in; doppler_max_ = configuration->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) { doppler_max_ = FLAGS_doppler_max; } acq_parameters.doppler_max = doppler_max_; auto code_length = static_cast(std::round(static_cast(fs_in) / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS))); acq_parameters.code_length = code_length; // The FPGA can only use FFT lengths that are a power of two. float nbits = ceilf(log2f(static_cast(code_length) * 2.0)); uint32_t nsamples_total = pow(2, nbits); uint32_t select_queue_Fpga = configuration->property(role + ".select_queue_Fpga", 0); acq_parameters.select_queue_Fpga = select_queue_Fpga; std::string default_device_name = "/dev/uio0"; std::string device_name = configuration->property(role + ".devicename", default_device_name); acq_parameters.device_name = device_name; acq_parameters.samples_per_code = nsamples_total; acq_parameters.excludelimit = static_cast(1 + ceil(GPS_L1_CA_CHIP_PERIOD_S * static_cast(fs_in))); // compute all the GPS L1 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time // a channel is assigned) auto fft_if = std::make_unique(nsamples_total, true); // allocate memory to compute all the PRNs and compute all the possible codes volk_gnsssdr::vector> code(nsamples_total); volk_gnsssdr::vector> fft_codes_padded(nsamples_total); d_all_fft_codes_ = std::vector(nsamples_total * NUM_PRNs); // memory containing all the possible fft codes for PRN 0 to 32 float max; int32_t tmp; int32_t tmp2; int32_t local_code; int32_t fft_data; // temporary maxima search for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++) { gps_l1_ca_code_gen_complex_sampled(code, PRN, fs_in, 0); // generate PRN code for (uint32_t s = code_length; s < 2 * code_length; s++) { code[s] = code[s - code_length]; } // fill in zero padding for (uint32_t s = 2 * code_length; s < nsamples_total; s++) { code[s] = std::complex(0.0, 0.0); } std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer fft_if->execute(); // Run the FFT of local code volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values max = 0; // initialize maximum value for (uint32_t i = 0; i < nsamples_total; i++) // search for maxima { if (std::abs(fft_codes_padded[i].real()) > max) { max = std::abs(fft_codes_padded[i].real()); } if (std::abs(fft_codes_padded[i].imag()) > max) { max = std::abs(fft_codes_padded[i].imag()); } } // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs // and package codes in a format that is ready to be written to the FPGA for (uint32_t i = 0; i < nsamples_total; i++) { tmp = static_cast(floor(fft_codes_padded[i].real() * (pow(2, quant_bits_local_code - 1) - 1) / max)); tmp2 = static_cast(floor(fft_codes_padded[i].imag() * (pow(2, quant_bits_local_code - 1) - 1) / max)); local_code = (tmp & select_lsbits) | ((tmp2 * shl_code_bits) & select_msbits); // put together the real part and the imaginary part fft_data = local_code & select_all_code_bits; d_all_fft_codes_[i + (nsamples_total * (PRN - 1))] = fft_data; } } // acq_parameters acq_parameters.all_fft_codes = d_all_fft_codes_.data(); // reference for the FPGA FFT-IFFT attenuation factor acq_parameters.total_block_exp = configuration->property(role + ".total_block_exp", 10); acq_parameters.num_doppler_bins_step2 = configuration->property(role + ".second_nbins", 4); acq_parameters.doppler_step2 = configuration->property(role + ".second_doppler_step", 125.0); acq_parameters.make_2_steps = configuration->property(role + ".make_two_steps", false); acq_parameters.max_num_acqs = configuration->property(role + ".max_num_acqs", 2); acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters); channel_ = 0; doppler_step_ = 0; gnss_synchro_ = nullptr; if (in_streams_ > 1) { LOG(ERROR) << "This implementation only supports one input stream"; } if (out_streams_ > 0) { LOG(ERROR) << "This implementation does not provide an output stream"; } } void GpsL1CaPcpsAcquisitionFpga::stop_acquisition() { // this command causes the SW to reset the HW. acquisition_fpga_->reset_acquisition(); } void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold) { DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold; acquisition_fpga_->set_threshold(threshold); } void GpsL1CaPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; acquisition_fpga_->set_doppler_max(doppler_max_); } void GpsL1CaPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; acquisition_fpga_->set_doppler_step(doppler_step_); } void GpsL1CaPcpsAcquisitionFpga::set_doppler_center(int doppler_center) { doppler_center_ = doppler_center; acquisition_fpga_->set_doppler_center(doppler_center_); } void GpsL1CaPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; acquisition_fpga_->set_gnss_synchro(gnss_synchro_); } signed int GpsL1CaPcpsAcquisitionFpga::mag() { return acquisition_fpga_->mag(); } void GpsL1CaPcpsAcquisitionFpga::init() { acquisition_fpga_->init(); } void GpsL1CaPcpsAcquisitionFpga::set_local_code() { acquisition_fpga_->set_local_code(); } void GpsL1CaPcpsAcquisitionFpga::reset() { // this function starts the acquisition process acquisition_fpga_->set_active(true); } void GpsL1CaPcpsAcquisitionFpga::set_state(int state) { acquisition_fpga_->set_state(state); } void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block) { if (top_block) { /* top_block is not null */ }; // Nothing to connect } void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block) { if (top_block) { /* top_block is not null */ }; // Nothing to disconnect } gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_left_block() { return nullptr; } gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_right_block() { return nullptr; }