/*! * \file galileo_e1_signal_processing.cc * \brief This library implements various functions for Galileo E1 signals * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e1_signal_processing.h" #include #include "Galileo_E1.h" #include "gnss_signal_processing.h" void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn) { std::string _galileo_signal = _Signal; signed int prn = _prn - 1; int index = 0; /* A simple error check */ if ((_prn < 1) || (_prn > 50)) { return; } if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E1_B_PRIMARY_CODE[prn].length(); i++) { hex_to_binary_converter(&_dest[index], Galileo_E1_B_PRIMARY_CODE[prn].at(i)); index = index + 4; } } else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2) { for (size_t i = 0; i < Galileo_E1_C_PRIMARY_CODE[prn].length(); i++) { hex_to_binary_converter(&_dest[index], Galileo_E1_C_PRIMARY_CODE[prn].at(i)); index = index + 4; } } else { return; } } void galileo_e1_sinboc_11_gen_int(int* _dest, int* _prn, unsigned int _length_out) { const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS; unsigned int _period = static_cast( _length_out / _length_in ); for (unsigned int i = 0; i < _length_in; i++) { for (unsigned int j = 0; j < (_period / 2); j++) { _dest[i * _period + j] = _prn[i]; } for (unsigned int j = (_period / 2); j < _period; j++) { _dest[i * _period + j] = - _prn[i]; } } } void galileo_e1_sinboc_61_gen_int(int* _dest, int* _prn, unsigned int _length_out) { const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS; unsigned int _period = static_cast(_length_out / _length_in); for (unsigned int i = 0; i < _length_in; i++) { for (unsigned int j = 0; j < _period; j += 2) { _dest[i * _period + j] = _prn[i]; } for (unsigned int j = 1; j < _period; j += 2) { _dest[i * _period + j] = - _prn[i]; } } } void galileo_e1_gen_float(float* _dest, int* _prn, char _Signal[3]) { std::string _galileo_signal = _Signal; const unsigned int _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS; const float alpha = sqrt(10.0 / 11.0); const float beta = sqrt(1.0 / 11.0); int sinboc_11[12 * 4092]; // _codeLength not accepted by Clang int sinboc_61[12 * 4092]; galileo_e1_sinboc_11_gen_int(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip galileo_e1_sinboc_61_gen_int(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2) { for (unsigned int i = 0; i < _codeLength; i++) { _dest[i] = alpha * static_cast(sinboc_11[i]) + beta * static_cast(sinboc_61[i]); } } else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2) { for (unsigned int i = 0; i < _codeLength; i++) { _dest[i] = alpha * static_cast(sinboc_11[i]) - beta * static_cast(sinboc_61[i]); } } else return; } void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift, bool _secondary_flag) { // This function is based on the GNU software GPS for MATLAB in Kay Borre's book std::string _galileo_signal = _Signal; unsigned int _samplesPerCode; const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz unsigned int _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS; int primary_code_E1_chips[static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS)]; _samplesPerCode = static_cast( static_cast(_fs) / (static_cast(_codeFreqBasis ) / static_cast(_codeLength))); const int _samplesPerChip = (_cboc == true) ? 12 : 2; const unsigned int delay = ((static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / Galileo_E1_B_CODE_LENGTH_CHIPS; galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip float* _signal_E1; _codeLength = _samplesPerChip * Galileo_E1_B_CODE_LENGTH_CHIPS; _signal_E1 = new float[_codeLength]; if (_cboc == true) { galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip } else { int _signal_E1_int[_codeLength]; galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); //generate sinboc(1,1) 2 samples per chip for( unsigned int ii = 0; ii < _codeLength; ++ii ) { _signal_E1[ii] = static_cast< float >( _signal_E1_int[ii] ); } } if (_fs != _samplesPerChip * _codeFreqBasis) { float* _resampled_signal = new float[_samplesPerCode]; resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs delete[] _signal_E1; _signal_E1 = _resampled_signal; } if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag) { float* _signal_E1C_secondary = new float[static_cast(Galileo_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode]; for (unsigned int i = 0; i < static_cast(Galileo_E1_C_SECONDARY_CODE_LENGTH); i++) { for (unsigned k = 0; k < _samplesPerCode; k++) { _signal_E1C_secondary[i*_samplesPerCode + k] = _signal_E1[k] * (Galileo_E1_C_SECONDARY_CODE.at(i) == '0' ? 1.0f : -1.0f); } } _samplesPerCode *= static_cast(Galileo_E1_C_SECONDARY_CODE_LENGTH); delete[] _signal_E1; _signal_E1 = _signal_E1C_secondary; } for (unsigned int i = 0; i < _samplesPerCode; i++) { _dest[(i + delay) % _samplesPerCode] = _signal_E1[i]; } delete[] _signal_E1; } void galileo_e1_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift, bool _secondary_flag) { std::string _galileo_signal = _Signal; const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz unsigned int _samplesPerCode = static_cast( static_cast(_fs) / (static_cast(_codeFreqBasis ) / static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS))); if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag) { _samplesPerCode *= static_cast(Galileo_E1_C_SECONDARY_CODE_LENGTH); } float real_code[_samplesPerCode]; galileo_e1_code_gen_float_sampled( real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag ); for( unsigned int ii = 0; ii < _samplesPerCode; ++ii ) { _dest[ii] = std::complex< float >( real_code[ii], 0.0f ); } } void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift) { galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false); } void galileo_e1_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift) { galileo_e1_code_gen_complex_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false); }