/*! * \file gps_l1_ca_dll_pll_optim_tracking_cc.cc * \brief Implementation of a code DLL + carrier PLL tracking block * \author Javier Arribas, 2012. jarribas(at)cttc.es * GPS L1 TRACKING MODULE OPTIMIZED FOR SPEED: * - Code Doppler is not compensated in the local replica * Code DLL + carrier PLL according to the algorithms described in: * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkha user, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_dll_pll_optim_tracking_cc.h" #include #include #include #include #include #include #include "gnss_synchro.h" #include "gps_sdr_signal_processing.h" #include "tracking_discriminators.h" #include "lock_detectors.h" #include "GPS_L1_CA.h" #include "nco_lib.h" #include "control_message_factory.h" /*! * \todo Include in definition header file */ #define CN0_ESTIMATION_SAMPLES 20 #define MINIMUM_VALID_CN0 25 #define MAXIMUM_LOCK_FAIL_COUNTER 50 #define CARRIER_LOCK_THRESHOLD 0.85 using google::LogMessage; gps_l1_ca_dll_pll_optim_tracking_cc_sptr gps_l1_ca_dll_pll_make_optim_tracking_cc( long if_freq, long fs_in, unsigned int vector_length, boost::shared_ptr queue, bool dump, std::string dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) { return gps_l1_ca_dll_pll_optim_tracking_cc_sptr(new Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc(if_freq, fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips)); } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = d_gnuradio_forecast_samples; //set the required available samples in each call } Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc( long if_freq, long fs_in, unsigned int vector_length, boost::shared_ptr queue, bool dump, std::string dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) : gr::block("Gps_L1_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { // initialize internal vars d_queue = queue; d_dump = dump; d_if_freq = if_freq; d_fs_in = fs_in; d_vector_length = vector_length; d_gnuradio_forecast_samples = static_cast(d_vector_length) * 2; d_dump_filename = dump_filename; // Initialize tracking ========================================== d_code_loop_filter.set_DLL_BW(dll_bw_hz); d_carrier_loop_filter.set_PLL_BW(pll_bw_hz); //--- DLL variables -------------------------------------------------------- d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) // Initialization of local code replica // Get space for a vector with the C/A code replica sampled 1x/chip d_ca_code = static_cast(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment())); // Get space for the resampled early / prompt / late local replicas d_early_code = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); d_prompt_code = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); d_late_code = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); // space for carrier wipeoff and signal baseband vectors d_carr_sign = static_cast(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment())); // correlator outputs (scalar) d_Early = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); d_Prompt = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); d_Late = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); //--- Perform initializations ------------------------------ // define initial code frequency basis of NCO d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ; // define residual code phase (in chips) d_rem_code_phase_samples = 0.0; // define residual carrier phase d_rem_carr_phase_rad = 0.0; // sample synchronization d_sample_counter = 0; //d_sample_counter_seconds = 0; d_acq_sample_stamp = 0; d_enable_tracking = false; d_pull_in = false; d_last_seg = 0; d_current_prn_length_samples = static_cast(d_vector_length); // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; systemName["G"] = std::string("GPS"); d_channel_internal_queue = 0; d_acquisition_gnss_synchro = 0; d_channel = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_acc_carrier_phase_rad = 0.0; d_code_phase_samples = 0.0; d_acc_code_phase_secs = 0.0; } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking() { // correct the code phase according to the delay between acq and trk d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; long int acq_trk_diff_samples; double acq_trk_diff_seconds; acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp); //-d_vector_length; LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); //doppler effect // Fd=(C/(C+Vr))*F double radial_velocity; radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ; // new chip and prn sequence periods based on acq Doppler double T_chip_mod_seconds; double T_prn_mod_seconds; double T_prn_mod_samples; d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ; T_chip_mod_seconds = 1/d_code_freq_chips; T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); d_current_prn_length_samples = round(T_prn_mod_samples); double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ; double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; double corrected_acq_phase_samples, delay_correction_samples; corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); if (corrected_acq_phase_samples < 0) { corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; } delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; // DLL/PLL filter initialization d_carrier_loop_filter.initialize(); //initialize the carrier filter d_code_loop_filter.initialize(); //initialize the code filter // generate local reference ALWAYS starting at chip 1 (1 sample per chip) gps_l1_ca_code_gen_complex(&d_ca_code[1], d_acquisition_gnss_synchro->PRN, 0); d_ca_code[0] = d_ca_code[static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS)]; d_ca_code[static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS) + 1] = d_ca_code[1]; //****************************************************************************** // Experimental: pre-sampled local signal replica at nominal code frequency. // No code doppler correction double tcode_chips; int associated_chip_index; int code_length_chips = static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS); double code_phase_step_chips; int early_late_spc_samples; int epl_loop_length_samples; // unified loop for E, P, L code vectors code_phase_step_chips = (static_cast(d_code_freq_chips)) / (static_cast(d_fs_in)); tcode_chips = 0; // Alternative EPL code generation (40% of speed improvement!) early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips); epl_loop_length_samples = d_current_prn_length_samples +early_late_spc_samples*2; for (int i = 0; i < epl_loop_length_samples; i++) { associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips)); d_early_code[i] = d_ca_code[associated_chip_index]; tcode_chips = tcode_chips + code_phase_step_chips; } memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_late_code, &d_early_code[early_late_spc_samples*2], d_current_prn_length_samples* sizeof(gr_complex)); //****************************************************************************** d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0; d_rem_carr_phase_rad = 0; d_acc_carrier_phase_rad = 0; d_code_phase_samples = d_acq_code_phase_samples; std::string sys_ = &d_acquisition_gnss_synchro->System; sys = sys_.substr(0,1); // DEBUG OUTPUT std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; // enable tracking d_pull_in = true; d_enable_tracking = true; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples << std::endl; } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::update_local_code() { double tcode_chips; double rem_code_phase_chips; int associated_chip_index; int code_length_chips = static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS); double code_phase_step_chips; int early_late_spc_samples; int epl_loop_length_samples; // unified loop for E, P, L code vectors code_phase_step_chips = (static_cast(d_code_freq_chips)) / (static_cast(d_fs_in)); rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in); tcode_chips = -rem_code_phase_chips; //EPL code generation early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips); epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples*2; for (int i = 0; i < epl_loop_length_samples; i++) { associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips)); d_early_code[i] = d_ca_code[associated_chip_index]; tcode_chips = tcode_chips + code_phase_step_chips; } memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_late_code, &d_early_code[early_late_spc_samples*2], d_current_prn_length_samples* sizeof(gr_complex)); } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::update_local_carrier() { float phase_step_rad; phase_step_rad = static_cast(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast(d_fs_in); fxp_nco(d_carr_sign, d_current_prn_length_samples, d_rem_carr_phase_rad, phase_step_rad); } Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::~Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc() { d_dump_file.close(); volk_free(d_prompt_code); volk_free(d_late_code); volk_free(d_early_code); volk_free(d_carr_sign); volk_free(d_Early); volk_free(d_Prompt); volk_free(d_Late); delete[] d_ca_code; delete[] d_Prompt_buffer; } // Tracking signal processing int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // stream to collect cout calls to improve thread safety std::stringstream tmp_str_stream; double carr_error_hz; double carr_error_filt_hz; double code_error_chips; double code_error_filt_chips; if (d_enable_tracking == true) { /* * Receiver signal alignment */ if (d_pull_in == true) { int samples_offset; float acq_trk_shif_correction_samples; int acq_to_trk_delay_samples; acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_current_prn_length_samples)); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples d_pull_in = false; consume_each(samples_offset); //shift input to perform alignment with local replica return 1; } // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data; // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // Block input data and block output stream pointers const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Generate local code and carrier replicas (using \hat{f}_d(k-1)) //update_local_code(); //disabled in the speed optimized tracking! update_local_carrier(); // perform Early, Prompt and Late correlation #if USING_VOLK_CW_EPL_CORR_CUSTOM d_correlator.Carrier_wipeoff_and_EPL_volk_custom(d_current_prn_length_samples, in, d_carr_sign, d_early_code, d_prompt_code, d_late_code, d_Early, d_Prompt, d_Late); #else d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples, in, d_carr_sign, d_early_code, d_prompt_code, d_late_code, d_Early, d_Prompt, d_Late); #endif // ################## PLL ########################################################## // PLL discriminator carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI; // Carrier discriminator filter carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); // New carrier Doppler frequency estimation d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; // New code Doppler frequency estimation d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ); //carrier phase accumulator for (K) doppler estimation d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD; //remnant carrier phase to prevent overflow in the code NCO d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD; d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI); // ################## DLL ########################################################## // DLL discriminator code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti] // Code discriminator filter code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second] //Code phase accumulator double code_error_filt_secs; code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds] d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs; // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // keep alignment parameters for the next input buffer double T_chip_seconds; double T_prn_seconds; double T_prn_samples; double K_blk_samples; // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation T_chip_seconds = 1.0 / d_code_freq_chips; T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; T_prn_samples = T_prn_seconds * static_cast(d_fs_in); K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast(d_fs_in); d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt; d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; } if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; std::unique_ptr cmf(new ControlMessageFactory()); if (d_queue != gr::msg_queue::sptr()) { d_queue->handle(cmf->GetQueueMessage(d_channel, 2)); } d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } } // ########### Output the tracking data to navigation and PVT ########## current_synchro_data.Prompt_I = static_cast((*d_Prompt).real()); current_synchro_data.Prompt_Q = static_cast((*d_Prompt).imag()); // Tracking_timestamp_secs is aligned with the PRN start sample //current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / static_cast(d_fs_in); current_synchro_data.Tracking_timestamp_secs = (static_cast(d_sample_counter) + static_cast(d_rem_code_phase_samples)) / static_cast(d_fs_in); d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0 current_synchro_data.Code_phase_secs = 0; current_synchro_data.Carrier_phase_rads = static_cast(d_acc_carrier_phase_rad); current_synchro_data.Carrier_Doppler_hz = static_cast(d_carrier_doppler_hz); current_synchro_data.CN0_dB_hz = static_cast(d_CN0_SNV_dB_Hz); current_synchro_data.Flag_valid_pseudorange = false; *out[0] = current_synchro_data; // ########## DEBUG OUTPUT /*! * \todo The stop timer has to be moved to the signal source! */ if (floor(d_sample_counter / d_fs_in) != d_last_seg) { d_last_seg = floor(d_sample_counter / d_fs_in); if (d_channel == 0) { // debug: Second counter in channel 0 tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl; std::cout << tmp_str_stream.rdbuf(); LOG(INFO) << tmp_str_stream.rdbuf(); } tmp_str_stream << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << ", Doppler=" << d_carrier_doppler_hz << " [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; //std::cout << tmp_str_stream.rdbuf() << std::flush; LOG(INFO) << tmp_str_stream.rdbuf(); //if (d_channel == 0 || d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock! } } else { // ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled) /*! * \todo The stop timer has to be moved to the signal source! */ // stream to collect cout calls to improve thread safety std::stringstream tmp_str_stream; if (floor(d_sample_counter / d_fs_in) != d_last_seg) { d_last_seg = floor(d_sample_counter / d_fs_in); if (d_channel == 0) { // debug: Second counter in channel 0 tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; std::cout << tmp_str_stream.rdbuf() << std::flush; } } *d_Early = gr_complex(0,0); *d_Prompt = gr_complex(0,0); *d_Late = gr_complex(0,0); Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder d_acquisition_gnss_synchro->Flag_valid_pseudorange = false; *out[0] = *d_acquisition_gnss_synchro; } if(d_dump) { // MULTIPLEXED FILE RECORDING - Record results to file float prompt_I; float prompt_Q; float tmp_E, tmp_P, tmp_L; float tmp_float; double tmp_double; prompt_I = (*d_Prompt).real(); prompt_Q = (*d_Prompt).imag(); tmp_E = std::abs(*d_Early); tmp_P = std::abs(*d_Prompt); tmp_L = std::abs(*d_Late); try { // EPR d_dump_file.write((char*)&tmp_E, sizeof(float)); d_dump_file.write((char*)&tmp_P, sizeof(float)); d_dump_file.write((char*)&tmp_L, sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write((char*)&prompt_I, sizeof(float)); d_dump_file.write((char*)&prompt_Q, sizeof(float)); // PRN start sample stamp //tmp_float=(float)d_sample_counter; d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int)); // accumulated carrier phase tmp_float = d_acc_carrier_phase_rad; d_dump_file.write((char*)&tmp_float, sizeof(float)); // carrier and code frequency tmp_float = d_carrier_doppler_hz; d_dump_file.write((char*)&tmp_float, sizeof(float)); tmp_float = d_code_freq_chips; d_dump_file.write((char*)&tmp_float, sizeof(float)); //PLL commands tmp_float = carr_error_hz; d_dump_file.write((char*)&tmp_float, sizeof(float)); tmp_float = carr_error_filt_hz; d_dump_file.write((char*)&tmp_float, sizeof(float)); //DLL commands tmp_float = code_error_chips; d_dump_file.write((char*)&tmp_float, sizeof(float)); tmp_float = code_error_filt_chips; d_dump_file.write((char*)&tmp_float, sizeof(float)); // CN0 and carrier lock test tmp_float = d_CN0_SNV_dB_Hz; d_dump_file.write((char*)&tmp_float, sizeof(float)); tmp_float = d_carrier_lock_test; d_dump_file.write((char*)&tmp_float, sizeof(float)); // AUX vars (for debug purposes) tmp_float = d_rem_code_phase_samples; d_dump_file.write((char*)&tmp_float, sizeof(float)); tmp_double = (double)(d_sample_counter + d_current_prn_length_samples); d_dump_file.write((char*)&tmp_double, sizeof(double)); } catch (std::ifstream::failure& e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } consume_each(d_current_prn_length_samples); // this is necesary in gr_block derivates d_sample_counter += d_current_prn_length_samples; //count for the processed samples return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::set_channel(unsigned int channel) { d_channel = channel; LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename.append(boost::lexical_cast(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (std::ifstream::failure& e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::set_channel_queue(concurrent_queue *channel_internal_queue) { d_channel_internal_queue = channel_internal_queue; } void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; }