/*! * \file gps_l1_ca_telemetry_decoder_cc.cc * \brief Implementation of a NAV message demodulator block based on * Kay Borre book MATLAB-based GPS receiver * \author Javier Arribas, 2011. jarribas(at)cttc.es * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_telemetry_decoder_cc.h" #include "control_message_factory.h" #include #include #include #include #ifndef _rotl #define _rotl(X, N) ((X << N) ^ (X >> (32 - N))) // Used in the parity check algorithm #endif using google::LogMessage; gps_l1_ca_telemetry_decoder_cc_sptr gps_l1_ca_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump) { return gps_l1_ca_telemetry_decoder_cc_sptr(new gps_l1_ca_telemetry_decoder_cc(satellite, dump)); } gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc( const Gnss_Satellite &satellite, bool dump) : gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { // Ephemeris data port out this->message_port_register_out(pmt::mp("telemetry")); // initialize internal vars d_dump = dump; d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); // set the preamble uint16_t preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE; // preamble bits to sampled symbols d_preambles_symbols = static_cast(volk_gnsssdr_malloc(GPS_CA_PREAMBLE_LENGTH_SYMBOLS * sizeof(int32_t), volk_gnsssdr_get_alignment())); int32_t n = 0; for (uint16_t preambles_bit : preambles_bits) { for (uint32_t j = 0; j < GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; j++) { if (preambles_bit == 1) { d_preambles_symbols[n] = 1; } else { d_preambles_symbols[n] = -1; } n++; } } d_stat = 0U; d_flag_frame_sync = false; d_prev_GPS_frame_4bytes = 0; d_TOW_at_Preamble_ms = 0; flag_TOW_set = false; d_flag_preamble = false; d_flag_new_tow_available = false; d_channel = 0; flag_PLL_180_deg_phase_locked = false; d_preamble_time_samples = 0ULL; d_TOW_at_current_symbol_ms = 0; d_symbol_history.set_capacity(GPS_CA_PREAMBLE_LENGTH_SYMBOLS); d_crc_error_synchronization_counter = 0; d_current_subframe_symbol = 0; } gps_l1_ca_telemetry_decoder_cc::~gps_l1_ca_telemetry_decoder_cc() { volk_gnsssdr_free(d_preambles_symbols); d_symbol_history.clear(); if (d_dump_file.is_open() == true) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what(); } } } bool gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(uint32_t gpsword) { uint32_t d1, d2, d3, d4, d5, d6, d7, t, parity; // XOR as many bits in parallel as possible. The magic constants pick // up bits which are to be XOR'ed together to implement the GPS parity // check algorithm described in IS-GPS-200E. This avoids lengthy shift- // and-xor loops. d1 = gpsword & 0xFBFFBF00; d2 = _rotl(gpsword, 1) & 0x07FFBF01; d3 = _rotl(gpsword, 2) & 0xFC0F8100; d4 = _rotl(gpsword, 3) & 0xF81FFE02; d5 = _rotl(gpsword, 4) & 0xFC00000E; d6 = _rotl(gpsword, 5) & 0x07F00001; d7 = _rotl(gpsword, 6) & 0x00003000; t = d1 ^ d2 ^ d3 ^ d4 ^ d5 ^ d6 ^ d7; // Now XOR the 5 6-bit fields together to produce the 6-bit final result. parity = t ^ _rotl(t, 6) ^ _rotl(t, 12) ^ _rotl(t, 18) ^ _rotl(t, 24); parity = parity & 0x3F; if (parity == (gpsword & 0x3F)) { return (true); } return (false); } void gps_l1_ca_telemetry_decoder_cc::set_satellite(const Gnss_Satellite &satellite) { d_nav.reset(); d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite; d_nav.i_satellite_PRN = d_satellite.get_PRN(); DLOG(INFO) << "Navigation Satellite set to " << d_satellite; } void gps_l1_ca_telemetry_decoder_cc::set_channel(int32_t channel) { d_channel = channel; d_nav.i_channel_ID = channel; DLOG(INFO) << "Navigation channel set to " << channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename = "telemetry"; d_dump_filename.append(std::to_string(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } bool gps_l1_ca_telemetry_decoder_cc::decode_subframe() { char subframe[GPS_SUBFRAME_LENGTH]; int32_t symbol_accumulator_counter = 0; int32_t frame_bit_index = 0; int32_t word_index = 0; uint32_t GPS_frame_4bytes = 0; float symbol_accumulator = 0; bool subframe_synchro_confirmation = false; bool CRC_ok = true; for (float d_subframe_symbol : d_subframe_symbols) { // ******* SYMBOL TO BIT ******* // extended correlation to bit period is enabled in tracking! symbol_accumulator += d_subframe_symbol; // accumulate the input value in d_symbol_accumulator symbol_accumulator_counter++; if (symbol_accumulator_counter == 20) { // symbol to bit if (symbol_accumulator > 0) GPS_frame_4bytes += 1; // insert the telemetry bit in LSB symbol_accumulator = 0; symbol_accumulator_counter = 0; // ******* bits to words ****** frame_bit_index++; if (frame_bit_index == 30) { frame_bit_index = 0; // parity check // Each word in wordbuff is composed of: // Bits 0 to 29 = the GPS data word // Bits 30 to 31 = 2 LSBs of the GPS word ahead. // prepare the extended frame [-2 -1 0 ... 30] if (d_prev_GPS_frame_4bytes & 0x00000001) { GPS_frame_4bytes = GPS_frame_4bytes | 0x40000000; } if (d_prev_GPS_frame_4bytes & 0x00000002) { GPS_frame_4bytes = GPS_frame_4bytes | 0x80000000; } // Check that the 2 most recently logged words pass parity. Have to first // invert the data bits according to bit 30 of the previous word. if (GPS_frame_4bytes & 0x40000000) { GPS_frame_4bytes ^= 0x3FFFFFC0; // invert the data bits (using XOR) } if (gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(GPS_frame_4bytes)) { subframe_synchro_confirmation = true; } else { // std::cout << "word invalid sat " << this->d_satellite << std::endl; CRC_ok = false; } // add word to subframe // insert the word in the correct position of the subframe std::memcpy(&subframe[word_index * GPS_WORD_LENGTH], &GPS_frame_4bytes, sizeof(uint32_t)); word_index++; d_prev_GPS_frame_4bytes = GPS_frame_4bytes; // save the actual frame GPS_frame_4bytes = 0; } else { GPS_frame_4bytes <<= 1; // shift 1 bit left the telemetry word } } } // decode subframe // NEW GPS SUBFRAME HAS ARRIVED! if (CRC_ok) { int32_t subframe_ID = d_nav.subframe_decoder(subframe); //d ecode the subframe if (subframe_ID > 0 and subframe_ID < 6) { std::cout << "New GPS NAV message received in channel " << this->d_channel << ": " << "subframe " << subframe_ID << " from satellite " << Gnss_Satellite(std::string("GPS"), d_nav.i_satellite_PRN) << std::endl; switch (subframe_ID) { case 3: // we have a new set of ephemeris data for the current SV if (d_nav.satellite_validation() == true) { // get ephemeris object for this SV (mandatory) std::shared_ptr tmp_obj = std::make_shared(d_nav.get_ephemeris()); this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj)); } break; case 4: // Possible IONOSPHERE and UTC model update (page 18) if (d_nav.flag_iono_valid == true) { std::shared_ptr tmp_obj = std::make_shared(d_nav.get_iono()); this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj)); } if (d_nav.flag_utc_model_valid == true) { std::shared_ptr tmp_obj = std::make_shared(d_nav.get_utc_model()); this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj)); } break; case 5: // get almanac (if available) //TODO: implement almanac reader in navigation_message break; default: break; } d_flag_new_tow_available = true; } else { return false; } } return subframe_synchro_confirmation; } int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int32_t preamble_diff_ms = 0; auto **out = reinterpret_cast(&output_items[0]); // Get the output buffer pointer const auto **in = reinterpret_cast(&input_items[0]); // Get the input buffer pointer Gnss_Synchro current_symbol{}; // structure to save the synchronization information and send the output object to the next block // 1. Copy the current tracking output current_symbol = in[0][0]; // record the oldest subframe symbol before inserting a new symbol into the circular buffer if (d_current_subframe_symbol < GPS_SUBFRAME_MS and !d_symbol_history.empty()) { d_subframe_symbols[d_current_subframe_symbol] = d_symbol_history[0].Prompt_I; d_current_subframe_symbol++; } d_symbol_history.push_back(current_symbol); // add new symbol to the symbol queue consume_each(1); d_flag_preamble = false; // ******* preamble correlation ******** int32_t corr_value = 0; if ((d_symbol_history.size() == GPS_CA_PREAMBLE_LENGTH_SYMBOLS)) // and (d_make_correlation or !d_flag_frame_sync)) { // std::cout << "-------\n"; for (uint32_t i = 0; i < GPS_CA_PREAMBLE_LENGTH_SYMBOLS; i++) { if (d_symbol_history[i].Flag_valid_symbol_output == true) { if (d_symbol_history[i].Prompt_I < 0) // symbols clipping { corr_value -= d_preambles_symbols[i]; } else { corr_value += d_preambles_symbols[i]; } } } } // ******* frame sync ****************** if (std::abs(corr_value) == GPS_CA_PREAMBLE_LENGTH_SYMBOLS) { //TODO: Rewrite with state machine if (d_stat == 0) { // record the preamble sample stamp d_preamble_time_samples = d_symbol_history[0].Tracking_sample_counter; // record the preamble sample stamp DLOG(INFO) << "Preamble detection for SAT " << this->d_satellite << "d_symbol_history[0].Tracking_sample_counter=" << d_symbol_history[0].Tracking_sample_counter; d_stat = 1; // enter into frame pre-detection status } else if (d_stat == 1) // check 6 seconds of preamble separation { preamble_diff_ms = std::round(((static_cast(d_symbol_history[0].Tracking_sample_counter) - static_cast(d_preamble_time_samples)) / static_cast(d_symbol_history[0].fs)) * 1000.0); if (std::abs(preamble_diff_ms - GPS_SUBFRAME_MS) % GPS_SUBFRAME_MS == 0) { DLOG(INFO) << "Preamble confirmation for SAT " << this->d_satellite; d_flag_preamble = true; d_preamble_time_samples = d_symbol_history[0].Tracking_sample_counter; // record the PRN start sample index associated to the preamble if (!d_flag_frame_sync) { d_flag_frame_sync = true; if (corr_value < 0) { flag_PLL_180_deg_phase_locked = true; // PLL is locked to opposite phase! DLOG(INFO) << " PLL in opposite phase for Sat " << this->d_satellite.get_PRN(); } else { flag_PLL_180_deg_phase_locked = false; } DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at " << static_cast(d_preamble_time_samples) / static_cast(d_symbol_history[0].fs) << " [s]"; } // try to decode the subframe: if (decode_subframe() == false) { d_crc_error_synchronization_counter++; if (d_crc_error_synchronization_counter > 3) { DLOG(INFO) << "TOO MANY CRC ERRORS: Lost of frame sync SAT " << this->d_satellite << std::endl; d_stat = 0; // lost of frame sync d_flag_frame_sync = false; flag_TOW_set = false; d_crc_error_synchronization_counter = 0; } } d_current_subframe_symbol = 0; } } } else { if (d_stat == 1) { preamble_diff_ms = round(((static_cast(d_symbol_history[0].Tracking_sample_counter) - static_cast(d_preamble_time_samples)) / static_cast(d_symbol_history[0].fs)) * 1000.0); if (preamble_diff_ms > GPS_SUBFRAME_MS) { DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms; // std::cout << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms << std::endl; d_stat = 0; // lost of frame sync d_flag_frame_sync = false; flag_TOW_set = false; d_current_subframe_symbol = 0; d_crc_error_synchronization_counter = 0; d_TOW_at_current_symbol_ms = 0; } } } // 2. Add the telemetry decoder information if (this->d_flag_preamble == true and d_flag_new_tow_available == true) { d_TOW_at_current_symbol_ms = static_cast(d_nav.d_TOW * 1000.0) + GPS_CA_PREAMBLE_DURATION_MS; d_TOW_at_Preamble_ms = static_cast(d_nav.d_TOW * 1000.0); flag_TOW_set = true; d_flag_new_tow_available = false; } else { if (flag_TOW_set == true) { d_TOW_at_current_symbol_ms += GPS_L1_CA_CODE_PERIOD_MS; } } if (flag_TOW_set == true) { current_symbol.TOW_at_current_symbol_ms = d_TOW_at_current_symbol_ms; current_symbol.Flag_valid_word = flag_TOW_set; if (flag_PLL_180_deg_phase_locked == true) { // correct the accumulated phase for the Costas loop phase shift, if required current_symbol.Carrier_phase_rads += GPS_PI; } if (d_dump == true) { // MULTIPLEXED FILE RECORDING - Record results to file try { double tmp_double; uint64_t tmp_ulong_int; tmp_double = static_cast(d_TOW_at_current_symbol_ms) / 1000.0; d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); tmp_ulong_int = current_symbol.Tracking_sample_counter; d_dump_file.write(reinterpret_cast(&tmp_ulong_int), sizeof(uint64_t)); tmp_double = static_cast(d_TOW_at_Preamble_ms) / 1000.0; d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing observables dump file " << e.what(); } } // 3. Make the output (copy the object contents to the GNURadio reserved memory) *out[0] = current_symbol; return 1; } return 0; }