/*! * \file gps_l2c_signal.cc * \brief This class implements signal generators for the GPS L2C signals * \author Javier Arribas, 2015. jarribas(at)cttc.es * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include int32_t gps_l2c_m_shift(int32_t x) { return (int32_t)((x>>1)^((x&1)*0445112474)); } void gps_l2c_m_code(int32_t * _dest, unsigned int _prn) { int32_t x; x = GPS_L2C_M_INIT_REG[ _prn - 1]; for (int n = 0; n < GPS_L2_M_CODE_LENGTH_CHIPS; n++) { _dest[n] = (int8_t)(x&1); x = gps_l2c_m_shift(x); } } void gps_l2c_m_code_gen_complex(std::complex* _dest, unsigned int _prn) { int32_t _code[GPS_L2_M_CODE_LENGTH_CHIPS]; if (_prn>0 and _prn<51) { gps_l2c_m_code(_code, _prn); } for (signed int i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++) { _dest[i] = std::complex(1.0 - 2.0 * _code[i], 0); } } /* * Generates complex GPS L2C M code for the desired SV ID and sampled to specific sampling frequency */ void gps_l2c_m_code_gen_complex_sampled(std::complex* _dest, unsigned int _prn, signed int _fs) { int32_t _code[GPS_L2_M_CODE_LENGTH_CHIPS]; if (_prn > 0 and _prn < 51) { gps_l2c_m_code(_code, _prn); } signed int _samplesPerCode, _codeValueIndex; float _ts; float _tc; const signed int _codeFreqBasis = GPS_L2_M_CODE_RATE_HZ; //Hz const signed int _codeLength = GPS_L2_M_CODE_LENGTH_CHIPS; //--- Find number of samples per spreading code ---------------------------- _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength)); //--- Find time constants -------------------------------------------------- _ts = 1/(float)_fs; // Sampling period in sec _tc = 1/(float)_codeFreqBasis; // C/A chip period in sec float aux; for (signed int i = 0; i < _samplesPerCode; i++) { //=== Digitizing ======================================================= //--- Make index array to read C/A code values ------------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). //TODO: Check this formula! Seems to start with an extra sample // _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1; aux = (_ts * (i + 1)) / _tc; _codeValueIndex = static_cast(static_cast(aux)) - 1; //--- Make the digitized version of the C/A code ----------------------- // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == _samplesPerCode - 1) { //--- Correct the last index (due to number rounding issues) ----------- _dest[i] = std::complex(1.0 - 2.0 * _code[_codeLength - 1], 0); } else { _dest[i] = std::complex(1.0 - 2.0 * _code[_codeValueIndex], 0);; //repeat the chip -> upsample } } }