/*! * \file Galileo_E5b_pcps_acquisition_test.cc * \brief This class implements an acquisition test for * GalileoE5bPcpsAcquisition class based on some input parameters. * \author Piyush Gupta, 2020. piyush04111999@gmail.com * \note Code added as GSoC 2020 Program. * * ----------------------------------------------------------------------------- * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "concurrent_queue.h" #include "fir_filter.h" #include "galileo_e5b_pcps_acquisition.h" #include "gnss_block_interface.h" #include "gnss_sdr_valve.h" #include "gnss_synchro.h" #include "in_memory_configuration.h" #include "pass_through.h" #include "signal_generator.h" #include "signal_generator_c.h" #include #include #include #include #include #include #include #include #include #include #if HAS_GENERIC_LAMBDA #else #include #endif #ifdef GR_GREATER_38 #include #else #include #endif #if GNURADIO_USES_STD_POINTERS #else #include #endif // ######## GNURADIO BLOCK MESSAGE RECEVER ######### class GalileoE5bPcpsAcquisitionTest_msg_rx; #if GNURADIO_USES_STD_POINTERS using GalileoE5bPcpsAcquisitionTest_msg_rx_sptr = std::shared_ptr; #else using GalileoE5bPcpsAcquisitionTest_msg_rx_sptr = boost::shared_ptr; #endif GalileoE5bPcpsAcquisitionTest_msg_rx_sptr GalileoE5bPcpsAcquisitionTest_msg_rx_make(Concurrent_Queue& queue); class GalileoE5bPcpsAcquisitionTest_msg_rx : public gr::block { private: friend GalileoE5bPcpsAcquisitionTest_msg_rx_sptr GalileoE5bPcpsAcquisitionTest_msg_rx_make(Concurrent_Queue& queue); void msg_handler_channel_events(const pmt::pmt_t msg); explicit GalileoE5bPcpsAcquisitionTest_msg_rx(Concurrent_Queue& queue); Concurrent_Queue& channel_internal_queue; public: int rx_message; ~GalileoE5bPcpsAcquisitionTest_msg_rx(); //!< Default destructor }; GalileoE5bPcpsAcquisitionTest_msg_rx_sptr GalileoE5bPcpsAcquisitionTest_msg_rx_make(Concurrent_Queue& queue) { return GalileoE5bPcpsAcquisitionTest_msg_rx_sptr(new GalileoE5bPcpsAcquisitionTest_msg_rx(queue)); } void GalileoE5bPcpsAcquisitionTest_msg_rx::msg_handler_channel_events(const pmt::pmt_t msg) { try { int64_t message = pmt::to_long(std::move(msg)); rx_message = message; channel_internal_queue.push(rx_message); } catch (const boost::bad_any_cast& e) { std::cout << "msg_handler_telemetry Bad any cast!" << std::endl; rx_message = 0; } } GalileoE5bPcpsAcquisitionTest_msg_rx::GalileoE5bPcpsAcquisitionTest_msg_rx(Concurrent_Queue& queue) : gr::block("GalileoE5bPcpsAcquisitionTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)), channel_internal_queue(queue) { this->message_port_register_in(pmt::mp("events")); this->set_msg_handler(pmt::mp("events"), #if HAS_GENERIC_LAMBDA [this](pmt::pmt_t&& PH1) { msg_handler_channel_events(PH1); }); #else #if USE_BOOST_BIND_PLACEHOLDERS boost::bind(&GalileoE5bPcpsAcquisitionTest_msg_rx::msg_handler_channel_events, this, boost::placeholders::_1)); #else boost::bind(&GalileoE5bPcpsAcquisitionTest_msg_rx::msg_handler_channel_events, this, _1)); #endif #endif rx_message = 0; } GalileoE5bPcpsAcquisitionTest_msg_rx::~GalileoE5bPcpsAcquisitionTest_msg_rx() = default; // ########################################################### class GalileoE5bPcpsAcquisitionTest : public ::testing::Test { protected: GalileoE5bPcpsAcquisitionTest() { config = std::make_shared(); item_size = sizeof(gr_complex); gnss_synchro = Gnss_Synchro(); stop = false; message = 0; } ~GalileoE5bPcpsAcquisitionTest() = default; void init(); void start_queue(); void wait_message(); void process_message(); void stop_queue(); Concurrent_Queue channel_internal_queue; std::shared_ptr> queue; #if GNURADIO_USES_STD_POINTERS std::shared_ptr acquisition; #else boost::shared_ptr acquisition; #endif gr::top_block_sptr top_block; std::shared_ptr config; std::thread ch_thread; Gnss_Synchro gnss_synchro; size_t item_size; double fs_in = 32e6; double expected_doppler_hz = -632.0; double expected_delay_chips = 1234; double expected_delay_sec = 51; double mse_doppler = 0.0; double mse_delay = 0.0; double Pd = 0.0; double Pfa_p = 0.0; double Pfa_a = 0.0; float integration_time_ms = 1; float max_doppler_error_hz = 2 / (3 * integration_time_ms * 1e-3); float max_delay_error_chips = 0.5; unsigned int num_of_realizations = 1; unsigned int realization_counter = 0; unsigned int detection_counter = 0; unsigned int correct_estimation_counter = 0; unsigned int acquired_samples = 0; unsigned int mean_acq_time_us = 0; bool stop; int message; }; void GalileoE5bPcpsAcquisitionTest::init() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = 'E'; std::string signal = "7X"; signal.copy(gnss_synchro.Signal, 2, 0); gnss_synchro.PRN = 1; config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(fs_in)); config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.item_type", "gr_complex"); config->set_property("SignalSource.num_satellites", "1"); config->set_property("SignalSource.system_0", "E"); config->set_property("SignalSource.signal_0", "7X"); config->set_property("SignalSource.PRN_0", "11"); config->set_property("SignalSource.CN0_dB_0", "50"); config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); config->set_property("SignalSource.delay_sec_0", std::to_string(expected_delay_sec)); config->set_property("SignalSource.noise_flag", "false"); config->set_property("SignalSource.data_flag", "false"); config->set_property("SignalSource.BW_BB", "0.97"); config->set_property("SignalSource.dump", "false"); config->set_property("SignalSource.dump_filename", "../data/signal_source.dat"); config->set_property("InputFilter.implementation", "Fir_Filter"); config->set_property("InputFilter.input_item_type", "gr_complex"); config->set_property("InputFilter.output_item_type", "gr_complex"); config->set_property("InputFilter.taps_item_type", "float"); config->set_property("InputFilter.number_of_taps", "11"); config->set_property("InputFilter.number_of_bands", "2"); config->set_property("InputFilter.band1_begin", "0.0"); config->set_property("InputFilter.band1_end", "0.97"); config->set_property("InputFilter.band2_begin", "0.98"); config->set_property("InputFilter.band2_end", "1.0"); config->set_property("InputFilter.ampl1_begin", "1.0"); config->set_property("InputFilter.ampl1_end", "1.0"); config->set_property("InputFilter.ampl2_begin", "0.0"); config->set_property("InputFilter.ampl2_end", "0.0"); config->set_property("InputFilter.band1_error", "1.0"); config->set_property("InputFilter.band2_error", "1.0"); config->set_property("InputFilter.filter_type", "bandpass"); config->set_property("InputFilter.grid_density", "16"); config->set_property("Acquisition_7X.implementation", "Galileo_E5b_PCPS_Acquisition"); config->set_property("Acquisition_7X.item_type", "gr_complex"); config->set_property("Acquisition_7X.coherent_integration_time_ms", std::to_string(integration_time_ms)); config->set_property("Acquisition_7X.dump", "true"); config->set_property("Acquisition_7X.dump_filename", "./acquisition"); config->set_property("Acquisition_7X.threshold", "0.001"); config->set_property("Acquisition_7X.doppler_max", "10000"); config->set_property("Acquisition_7X.doppler_step", "250"); config->set_property("Acquisition_7X.repeat_satellite", "false"); } void GalileoE5bPcpsAcquisitionTest::start_queue() { stop = false; ch_thread = std::thread(&GalileoE5bPcpsAcquisitionTest::wait_message, this); } void GalileoE5bPcpsAcquisitionTest::wait_message() { std::chrono::time_point start, end; std::chrono::duration elapsed_seconds(0); while (!stop) { acquisition->reset(); start = std::chrono::system_clock::now(); channel_internal_queue.wait_and_pop(message); end = std::chrono::system_clock::now(); elapsed_seconds = end - start; mean_acq_time_us += elapsed_seconds.count() * 1e6; process_message(); } } void GalileoE5bPcpsAcquisitionTest::process_message() { if (message == 1) { double delay_error_chips = std::abs(static_cast(expected_delay_chips) - static_cast(gnss_synchro.Acq_delay_samples - 5) * 10230.0 / (static_cast(fs_in) * 1e-3)); double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); // The term -5 is here to correct the additional delay introduced by the FIR filter /* double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*10230.0/((double)fs_in*1e-3)); double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); */ detection_counter++; mse_delay += std::pow(delay_error_chips, 2); mse_doppler += std::pow(doppler_error_hz, 2); if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz)) { correct_estimation_counter++; } } realization_counter++; // std::cout << correct_estimation_counter << "correct estimation counter\n"; std::cout << "Progress: " << round(static_cast(realization_counter / num_of_realizations * 100)) << "% \r" << std::flush; // std::cout << message << "message'\n'"; if (realization_counter == num_of_realizations) { mse_delay /= num_of_realizations; mse_doppler /= num_of_realizations; Pd = static_cast(correct_estimation_counter) / static_cast(num_of_realizations); Pfa_a = static_cast(detection_counter) / static_cast(num_of_realizations); Pfa_p = static_cast(detection_counter - correct_estimation_counter) / static_cast(num_of_realizations); mean_acq_time_us /= num_of_realizations; stop_queue(); top_block->stop(); } } void GalileoE5bPcpsAcquisitionTest::stop_queue() { stop = true; } TEST_F(GalileoE5bPcpsAcquisitionTest, Instantiate) { init(); #if GNURADIO_USES_STD_POINTERS acquisition = std::make_shared(config.get(), "Acquisition_7X", 1, 0); #else acquisition = boost::make_shared(config.get(), "Acquisition_7X", 1, 0); #endif } TEST_F(GalileoE5bPcpsAcquisitionTest, ConnectAndRun) { int nsamples = 21000 * 3; std::chrono::time_point begin, end; std::chrono::duration elapsed_seconds(0); queue = std::make_shared>(); top_block = gr::make_top_block("Acquisition test"); init(); #if GNURADIO_USES_STD_POINTERS acquisition = std::make_shared(config.get(), "Acquisition_7X", 1, 0); #else acquisition = boost::make_shared(config.get(), "Acquisition_7X", 1, 0); #endif auto msg_rx = GalileoE5bPcpsAcquisitionTest_msg_rx_make(channel_internal_queue); ASSERT_NO_THROW({ acquisition->connect(top_block); auto source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0)); auto valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue.get()); top_block->connect(source, 0, valve, 0); top_block->connect(valve, 0, acquisition->get_left_block(), 0); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting the blocks of acquisition test."; EXPECT_NO_THROW({ begin = std::chrono::system_clock::now(); top_block->run(); // Start threads and wait end = std::chrono::system_clock::now(); elapsed_seconds = end - begin; }) << "Failure running the top_block."; std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; } TEST_F(GalileoE5bPcpsAcquisitionTest, ValidationOfResults) { top_block = gr::make_top_block("Acquisition test"); init(); #if GNURADIO_USES_STD_POINTERS acquisition = std::make_shared(config.get(), "Acquisition_7X", 1, 0); #else acquisition = boost::make_shared(config.get(), "Acquisition_7X", 1, 0); #endif std::shared_ptr input_filter = std::make_shared(config.get(), "InputFilter", 1, 1); auto msg_rx = GalileoE5bPcpsAcquisitionTest_msg_rx_make(channel_internal_queue); queue = std::make_shared>(); ASSERT_NO_THROW({ acquisition->set_channel(0); }) << "Failure setting channel."; ASSERT_NO_THROW({ acquisition->set_gnss_synchro(&gnss_synchro); }) << "Failure setting gnss_synchro."; ASSERT_NO_THROW({ acquisition->set_threshold(0.0001); }) << "Failure setting threshold."; ASSERT_NO_THROW({ acquisition->set_doppler_max(5000); }) << "Failure setting doppler_max."; ASSERT_NO_THROW({ acquisition->set_doppler_step(100); }) << "Failure setting doppler_step."; ASSERT_NO_THROW({ acquisition->connect(top_block); }) << "Failure connecting acquisition to the top_block."; ASSERT_NO_THROW({ std::shared_ptr signal_generator = std::make_shared(config.get(), "SignalSource", 0, 1, queue.get()); std::shared_ptr filter = std::make_shared(config.get(), "InputFilter", 1, 1); std::shared_ptr signal_source = std::make_shared(signal_generator, filter, "SignalSource", queue.get()); filter->connect(top_block); signal_source->connect(top_block); top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting the blocks of acquisition test."; acquisition->reset(); acquisition->init(); // i = 0 --> satellite in acquisition is visible // i = 1 --> satellite in acquisition is not visible for (unsigned int i = 0; i < 1; i++) { init(); switch (i) { case 0: { gnss_synchro.PRN = 11; // present break; } case 1: { gnss_synchro.PRN = 19; // not present break; } } acquisition->set_gnss_synchro(&gnss_synchro); acquisition->set_local_code(); acquisition->set_state(1); start_queue(); EXPECT_NO_THROW({ top_block->run(); // Start threads and wait }) << "Failure running the top_block."; stop_queue(); ch_thread.join(); if (i == 0) { EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; if (message == 1) { // std::cout << gnss_synchro.Acq_delay_samples << "acq delay'\n'"; // std::cout << gnss_synchro.Acq_doppler_hz << "acq doppler'\n'"; EXPECT_EQ(static_cast(1), correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation."; } } else if (i == 1) { EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL."; } } }