/*! * \file rtklib_rtkcmn.cc * \brief rtklib common functions * \authors * * This is a derived work from RTKLIB http://www.rtklib.com/ * The original source code at https://github.com/tomojitakasu/RTKLIB is * released under the BSD 2-clause license with an additional exclusive clause * that does not apply here. This additional clause is reproduced below: * * " The software package includes some companion executive binaries or shared * libraries necessary to execute APs on Windows. These licenses succeed to the * original ones of these software. " * * Neither the executive binaries nor the shared libraries are required by, used * or included in GNSS-SDR. * * ----------------------------------------------------------------------------- * Copyright (C) 2007-2013, T. Takasu * Copyright (C) 2017, Javier Arribas * Copyright (C) 2017, Carles Fernandez * All rights reserved. * * SPDX-License-Identifier: BSD-2-Clause * *----------------------------------------------------------------------------*/ #include "rtklib_rtkcmn.h" #include #include #include #include #include #include #include #include #include const double GPST0[] = {1980, 1, 6, 0, 0, 0}; /* gps time reference */ const double GST0[] = {1999, 8, 22, 0, 0, 0}; /* galileo system time reference */ const double BDT0[] = {2006, 1, 1, 0, 0, 0}; /* beidou time reference */ static double timeoffset_ = 0.0; double leaps[MAXLEAPS + 1][7] = {/* leap seconds (y,m,d,h,m,s,utc-gpst) */ {2017, 1, 1, 0, 0, 0, -18}, {2015, 7, 1, 0, 0, 0, -17}, {2012, 7, 1, 0, 0, 0, -16}, {2009, 1, 1, 0, 0, 0, -15}, {2006, 1, 1, 0, 0, 0, -14}, {1999, 1, 1, 0, 0, 0, -13}, {1997, 7, 1, 0, 0, 0, -12}, {1996, 1, 1, 0, 0, 0, -11}, {1994, 7, 1, 0, 0, 0, -10}, {1993, 7, 1, 0, 0, 0, -9}, {1992, 7, 1, 0, 0, 0, -8}, {1991, 1, 1, 0, 0, 0, -7}, {1990, 1, 1, 0, 0, 0, -6}, {1988, 1, 1, 0, 0, 0, -5}, {1985, 7, 1, 0, 0, 0, -4}, {1983, 7, 1, 0, 0, 0, -3}, {1982, 7, 1, 0, 0, 0, -2}, {1981, 7, 1, 0, 0, 0, -1}, {}}; const char *formatstrs[32] = {/* stream format strings */ "RTCM 2", /* 0 */ "RTCM 3", /* 1 */ "NovAtel OEM6", /* 2 */ "NovAtel OEM3", /* 3 */ "u-blox", /* 4 */ "Superstar II", /* 5 */ "Hemisphere", /* 6 */ "SkyTraq", /* 7 */ "GW10", /* 8 */ "Javad", /* 9 */ "NVS BINR", /* 10 */ "BINEX", /* 11 */ "Trimble RT17", /* 12 */ "Septentrio", /* 13 */ "CMR/CMR+", /* 14 */ "LEX Receiver", /* 15 */ "RINEX", /* 16 */ "SP3", /* 17 */ "RINEX CLK", /* 18 */ "SBAS", /* 19 */ "NMEA 0183", /* 20 */ nullptr}; char obscodes[][3] = { /* observation code strings */ "", "1C", "1P", "1W", "1Y", "1M", "1N", "1S", "1L", "1E", /* 0- 9 */ "1A", "1B", "1X", "1Z", "2C", "2D", "2S", "2L", "2X", "2P", /* 10-19 */ "2W", "2Y", "2M", "2N", "5I", "5Q", "5X", "7I", "7Q", "7X", /* 20-29 */ "6A", "6B", "6C", "6X", "6Z", "6S", "6L", "8L", "8Q", "8X", /* 30-39 */ "2I", "2Q", "6I", "6Q", "3I", "3Q", "3X", "1I", "1Q", "5A", /* 40-49 */ "5B", "5C", "9A", "9B", "9C", "9X", "", "", "", "" /* 50-59 */ }; unsigned char obsfreqs[] = { /* 1:L1/E1, 2:L2/B1, 3:L5/E5a/L3, 4:L6/LEX/B3, 5:E5b/B2, 6:E5(a+b), 7:S */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0- 9 */ 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, /* 10-19 */ 2, 2, 2, 2, 3, 3, 3, 5, 5, 5, /* 20-29 */ 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, /* 30-39 */ 2, 2, 4, 4, 3, 3, 3, 1, 1, 3, /* 40-49 */ 3, 3, 7, 7, 7, 7, 0, 0, 0, 0 /* 50-59 */ }; char codepris[7][MAXFREQ][16] = { /* code priority table */ /* L1/E1 L2/B1 L5/E5a/L3 L6/LEX/B3 E5b/B2 E5(a+b) S */ {"CPYWMNSL", "PYWCMNDSLX", "IQX", "", "", "", ""}, /* GPS */ {"PC", "PC", "IQX", "", "", "", ""}, /* GLO */ {"CABXZ", "", "IQX", "ABCXZ", "IQX", "IQX", ""}, /* GAL */ {"CSLXZ", "SLX", "IQX", "SLX", "", "", ""}, /* QZS */ {"C", "", "IQX", "", "", "", ""}, /* SBS */ {"IQX", "IQX", "IQX", "IQX", "IQX", "", ""}, /* BDS */ {"", "", "ABCX", "", "", "", "ABCX"} /* IRN */ }; fatalfunc_t *fatalfunc = nullptr; /* fatal callback function */ /* crc tables generated by util/gencrc ---------------------------------------*/ const uint16_t TBL_CR_C16[] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0}; const unsigned int TBL_CR_C24_Q[] = { 0x000000, 0x864CFB, 0x8AD50D, 0x0C99F6, 0x93E6E1, 0x15AA1A, 0x1933EC, 0x9F7F17, 0xA18139, 0x27CDC2, 0x2B5434, 0xAD18CF, 0x3267D8, 0xB42B23, 0xB8B2D5, 0x3EFE2E, 0xC54E89, 0x430272, 0x4F9B84, 0xC9D77F, 0x56A868, 0xD0E493, 0xDC7D65, 0x5A319E, 0x64CFB0, 0xE2834B, 0xEE1ABD, 0x685646, 0xF72951, 0x7165AA, 0x7DFC5C, 0xFBB0A7, 0x0CD1E9, 0x8A9D12, 0x8604E4, 0x00481F, 0x9F3708, 0x197BF3, 0x15E205, 0x93AEFE, 0xAD50D0, 0x2B1C2B, 0x2785DD, 0xA1C926, 0x3EB631, 0xB8FACA, 0xB4633C, 0x322FC7, 0xC99F60, 0x4FD39B, 0x434A6D, 0xC50696, 0x5A7981, 0xDC357A, 0xD0AC8C, 0x56E077, 0x681E59, 0xEE52A2, 0xE2CB54, 0x6487AF, 0xFBF8B8, 0x7DB443, 0x712DB5, 0xF7614E, 0x19A3D2, 0x9FEF29, 0x9376DF, 0x153A24, 0x8A4533, 0x0C09C8, 0x00903E, 0x86DCC5, 0xB822EB, 0x3E6E10, 0x32F7E6, 0xB4BB1D, 0x2BC40A, 0xAD88F1, 0xA11107, 0x275DFC, 0xDCED5B, 0x5AA1A0, 0x563856, 0xD074AD, 0x4F0BBA, 0xC94741, 0xC5DEB7, 0x43924C, 0x7D6C62, 0xFB2099, 0xF7B96F, 0x71F594, 0xEE8A83, 0x68C678, 0x645F8E, 0xE21375, 0x15723B, 0x933EC0, 0x9FA736, 0x19EBCD, 0x8694DA, 0x00D821, 0x0C41D7, 0x8A0D2C, 0xB4F302, 0x32BFF9, 0x3E260F, 0xB86AF4, 0x2715E3, 0xA15918, 0xADC0EE, 0x2B8C15, 0xD03CB2, 0x567049, 0x5AE9BF, 0xDCA544, 0x43DA53, 0xC596A8, 0xC90F5E, 0x4F43A5, 0x71BD8B, 0xF7F170, 0xFB6886, 0x7D247D, 0xE25B6A, 0x641791, 0x688E67, 0xEEC29C, 0x3347A4, 0xB50B5F, 0xB992A9, 0x3FDE52, 0xA0A145, 0x26EDBE, 0x2A7448, 0xAC38B3, 0x92C69D, 0x148A66, 0x181390, 0x9E5F6B, 0x01207C, 0x876C87, 0x8BF571, 0x0DB98A, 0xF6092D, 0x7045D6, 0x7CDC20, 0xFA90DB, 0x65EFCC, 0xE3A337, 0xEF3AC1, 0x69763A, 0x578814, 0xD1C4EF, 0xDD5D19, 0x5B11E2, 0xC46EF5, 0x42220E, 0x4EBBF8, 0xC8F703, 0x3F964D, 0xB9DAB6, 0xB54340, 0x330FBB, 0xAC70AC, 0x2A3C57, 0x26A5A1, 0xA0E95A, 0x9E1774, 0x185B8F, 0x14C279, 0x928E82, 0x0DF195, 0x8BBD6E, 0x872498, 0x016863, 0xFAD8C4, 0x7C943F, 0x700DC9, 0xF64132, 0x693E25, 0xEF72DE, 0xE3EB28, 0x65A7D3, 0x5B59FD, 0xDD1506, 0xD18CF0, 0x57C00B, 0xC8BF1C, 0x4EF3E7, 0x426A11, 0xC426EA, 0x2AE476, 0xACA88D, 0xA0317B, 0x267D80, 0xB90297, 0x3F4E6C, 0x33D79A, 0xB59B61, 0x8B654F, 0x0D29B4, 0x01B042, 0x87FCB9, 0x1883AE, 0x9ECF55, 0x9256A3, 0x141A58, 0xEFAAFF, 0x69E604, 0x657FF2, 0xE33309, 0x7C4C1E, 0xFA00E5, 0xF69913, 0x70D5E8, 0x4E2BC6, 0xC8673D, 0xC4FECB, 0x42B230, 0xDDCD27, 0x5B81DC, 0x57182A, 0xD154D1, 0x26359F, 0xA07964, 0xACE092, 0x2AAC69, 0xB5D37E, 0x339F85, 0x3F0673, 0xB94A88, 0x87B4A6, 0x01F85D, 0x0D61AB, 0x8B2D50, 0x145247, 0x921EBC, 0x9E874A, 0x18CBB1, 0xE37B16, 0x6537ED, 0x69AE1B, 0xEFE2E0, 0x709DF7, 0xF6D10C, 0xFA48FA, 0x7C0401, 0x42FA2F, 0xC4B6D4, 0xC82F22, 0x4E63D9, 0xD11CCE, 0x575035, 0x5BC9C3, 0xDD8538}; extern "C" { void dgemm_(char *, char *, int *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); extern void dgetrf_(int *, int *, double *, int *, int *, int *); extern void dgetri_(int *, double *, int *, int *, double *, int *, int *); extern void dgetrs_(char *, int *, int *, double *, int *, int *, double *, int *, int *); } /* function prototypes -------------------------------------------------------*/ #ifdef IERS_MODEL extern int gmf_(double *mjd, double *lat, double *lon, double *hgt, double *zd, double *gmfh, double *gmfw); #endif /* fatal error ---------------------------------------------------------------*/ void fatalerr(const char *format, ...) { char msg[1024]; va_list ap; va_start(ap, format); vsprintf(msg, format, ap); va_end(ap); fprintf(stderr, "%s", msg); exit(-9); } /* satellite system+prn/slot number to satellite number ------------------------ * convert satellite system+prn/slot number to satellite number * args : int sys I satellite system (SYS_GPS,SYS_GLO,...) * int prn I satellite prn/slot number * return : satellite number (0:error) *-----------------------------------------------------------------------------*/ int satno(int sys, int prn) { if (prn <= 0) { return 0; } switch (sys) { case SYS_GPS: if (prn < MINPRNGPS || MAXPRNGPS < prn) { return 0; } return prn - MINPRNGPS + 1; case SYS_GLO: if (prn < MINPRNGLO || MAXPRNGLO < prn) { return 0; } return NSATGPS + prn - MINPRNGLO + 1; case SYS_GAL: if (prn < MINPRNGAL || MAXPRNGAL < prn) { return 0; } return NSATGPS + NSATGLO + prn - MINPRNGAL + 1; case SYS_QZS: if (prn < MINPRNQZS || MAXPRNQZS < prn) { return 0; } return NSATGPS + NSATGLO + NSATGAL + prn - MINPRNQZS + 1; case SYS_BDS: if (prn < MINPRNBDS || MAXPRNBDS < prn) { return 0; } return NSATGPS + NSATGLO + NSATGAL + NSATQZS + prn - MINPRNBDS + 1; case SYS_IRN: if (prn < MINPRNIRN || MAXPRNIRN < prn) { return 0; } return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + prn - MINPRNIRN + 1; case SYS_LEO: if (prn < MINPRNLEO || MAXPRNLEO < prn) { return 0; } return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + NSATIRN + prn - MINPRNLEO + 1; case SYS_SBS: if (prn < MINPRNSBS || MAXPRNSBS < prn) { return 0; } return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + NSATIRN + NSATLEO + prn - MINPRNSBS + 1; } return 0; } /* satellite number to satellite system ---------------------------------------- * convert satellite number to satellite system * args : int sat I satellite number (1-MAXSAT) * int *prn IO satellite prn/slot number (NULL: no output) * return : satellite system (SYS_GPS,SYS_GLO,...) *-----------------------------------------------------------------------------*/ int satsys(int sat, int *prn) { int sys = SYS_NONE; if (sat <= 0 || MAXSAT < sat) { sat = 0; } else if (sat <= NSATGPS) { sys = SYS_GPS; sat += MINPRNGPS - 1; } else if ((sat -= NSATGPS) <= NSATGLO) { sys = SYS_GLO; sat += MINPRNGLO - 1; } else if ((sat -= NSATGLO) <= NSATGAL) { sys = SYS_GAL; sat += MINPRNGAL - 1; } else if ((sat -= NSATGAL) <= NSATQZS) { sys = SYS_QZS; sat += MINPRNQZS - 1; } else if ((sat -= NSATQZS) <= NSATBDS) { sys = SYS_BDS; sat += MINPRNBDS - 1; } else if ((sat -= NSATBDS) <= NSATIRN) { sys = SYS_IRN; sat += MINPRNIRN - 1; } else if ((sat -= NSATIRN) <= NSATLEO) { sys = SYS_LEO; sat += MINPRNLEO - 1; } else if ((sat -= NSATLEO) <= NSATSBS) { sys = SYS_SBS; sat += MINPRNSBS - 1; } else { sat = 0; } if (prn) { *prn = sat; } return sys; } /* satellite id to satellite number -------------------------------------------- * convert satellite id to satellite number * args : char *id I satellite id (nn,Gnn,Rnn,Enn,Jnn,Cnn,Inn or Snn) * return : satellite number (0: error) * notes : 120-142 and 193-199 are also recognized as sbas and qzss *-----------------------------------------------------------------------------*/ int satid2no(const char *id) { int sys; int prn; char code; if (sscanf(id, "%d", &prn) == 1) { if (MINPRNGPS <= prn && prn <= MAXPRNGPS) { sys = SYS_GPS; } else if (MINPRNSBS <= prn && prn <= MAXPRNSBS) { sys = SYS_SBS; } else if (MINPRNQZS <= prn && prn <= MAXPRNQZS) { sys = SYS_QZS; } else { return 0; } return satno(sys, prn); } if (sscanf(id, "%c%d", &code, &prn) < 2) { return 0; } switch (code) { case 'G': sys = SYS_GPS; prn += MINPRNGPS - 1; break; case 'R': sys = SYS_GLO; prn += MINPRNGLO - 1; break; case 'E': sys = SYS_GAL; prn += MINPRNGAL - 1; break; case 'J': sys = SYS_QZS; prn += MINPRNQZS - 1; break; case 'C': sys = SYS_BDS; prn += MINPRNBDS - 1; break; case 'I': sys = SYS_IRN; prn += MINPRNIRN - 1; break; case 'L': sys = SYS_LEO; prn += MINPRNLEO - 1; break; case 'S': sys = SYS_SBS; prn += 100; break; default: return 0; } return satno(sys, prn); } /* satellite number to satellite id -------------------------------------------- * convert satellite number to satellite id * args : int sat I satellite number * char *id O satellite id (Gnn,Rnn,Enn,Jnn,Cnn,Inn or nnn) * return : none *-----------------------------------------------------------------------------*/ void satno2id(int sat, char *id) { int prn; char id_aux[16]; switch (satsys(sat, &prn)) { case SYS_GPS: std::snprintf(id, sizeof(id_aux), "G%02d", prn - MINPRNGPS + 1); return; case SYS_GLO: snprintf(id, sizeof(id_aux), "R%02d", prn - MINPRNGLO + 1); return; case SYS_GAL: std::snprintf(id, sizeof(id_aux), "E%02d", prn - MINPRNGAL + 1); return; case SYS_QZS: std::snprintf(id, sizeof(id_aux), "J%02d", prn - MINPRNQZS + 1); return; case SYS_BDS: std::snprintf(id, sizeof(id_aux), "C%02d", prn - MINPRNBDS + 1); return; case SYS_IRN: std::snprintf(id, sizeof(id_aux), "I%02d", prn - MINPRNIRN + 1); return; case SYS_LEO: std::snprintf(id, sizeof(id_aux), "L%02d", prn - MINPRNLEO + 1); return; case SYS_SBS: std::snprintf(id, sizeof(id_aux), "%03d", prn); return; } } /* test excluded satellite ----------------------------------------------------- * test excluded satellite * args : int sat I satellite number * int svh I sv health flag * prcopt_t *opt I processing options (NULL: not used) * return : status (1:excluded,0:not excluded) *-----------------------------------------------------------------------------*/ int satexclude(int sat, int svh, const prcopt_t *opt) { int sys = satsys(sat, nullptr); if (svh < 0) { trace(3, "ephemeris unavailable: sat=%3d svh=%02X\n", sat, svh); return 1; /* ephemeris unavailable */ } if (opt) { if (opt->exsats[sat - 1] == 1) { trace(3, "excluded satellite: sat=%3d svh=%02X\n", sat, svh); return 1; /* excluded satellite */ } if (opt->exsats[sat - 1] == 2) { return 0; /* included satellite */ } if (!(sys & opt->navsys)) { trace(3, "unselected sat sys: sat=%3d svh=%02X\n", sat, svh); return 1; /* unselected sat sys */ } } if (sys == SYS_QZS) { svh &= 0xFE; /* mask QZSS LEX health */ } if (svh) { trace(3, "unhealthy satellite: sat=%3d svh=%02X\n", sat, svh); return 1; } return 0; } /* test SNR mask --------------------------------------------------------------- * test SNR mask * args : int base I rover or base-station (0:rover,1:base station) * int freq I frequency (0:L1,1:L2,2:L3,...) * double el I elevation angle (rad) * double snr I C/N0 (dBHz) * snrmask_t *mask I SNR mask * return : status (1:masked,0:unmasked) *-----------------------------------------------------------------------------*/ int testsnr(int base, int freq, double el, double snr, const snrmask_t *mask) { double minsnr; double a; int i; if (!mask->ena[base] || freq < 0 || freq >= NFREQ) { return 0; } a = (el * R2D + 5.0) / 10.0; i = static_cast(floor(a)); a -= i; if (i < 1) { minsnr = mask->mask[freq][0]; } else if (i > 8) { minsnr = mask->mask[freq][8]; } else { minsnr = (1.0 - a) * mask->mask[freq][i - 1] + a * mask->mask[freq][i]; } return snr < minsnr; } /* obs type string to obs code ------------------------------------------------- * convert obs code type string to obs code * args : char *str I obs code string ("1C","1P","1Y",...) * int *freq IO frequency (1:L1,2:L2,3:L5,4:L6,5:L7,6:L8,0:err) * (NULL: no output) * return : obs code (CODE_???) * notes : obs codes are based on reference [6] and qzss extension *-----------------------------------------------------------------------------*/ unsigned char obs2code(const char *obs, int *freq) { int i; if (freq) { *freq = 0; } for (i = 1; *obscodes[i]; i++) { if (strcmp(obscodes[i], obs) != 0) { continue; } if (freq) { *freq = obsfreqs[i]; } return static_cast(i); } return CODE_NONE; } /* obs code to obs code string ------------------------------------------------- * convert obs code to obs code string * args : unsigned char code I obs code (CODE_???) * int *freq IO frequency (NULL: no output) * (1:L1/E1, 2:L2/B1, 3:L5/E5a/L3, 4:L6/LEX/B3, 5:E5b/B2, 6:E5(a+b), 7:S) * return : obs code string ("1C","1P","1P",...) * notes : obs codes are based on reference [6] and qzss extension *-----------------------------------------------------------------------------*/ char *code2obs(unsigned char code, int *freq) { if (freq) { *freq = 0; } if (code <= CODE_NONE || MAXCODE < code) { return const_cast(""); } if (freq) { *freq = obsfreqs[code]; } return obscodes[code]; } /* set code priority ----------------------------------------------------------- * set code priority for multiple codes in a frequency * args : int sys I system (or of SYS_???) * int freq I frequency (1:L1,2:L2,3:L5,4:L6,5:L7,6:L8,7:L9) * char *pri I priority of codes (series of code characters) * (higher priority precedes lower) * return : none *-----------------------------------------------------------------------------*/ void setcodepri(int sys, int freq, const char *pri) { trace(3, "setcodepri : sys=%d freq=%d pri=%s\n", sys, freq, pri); if (freq <= 0 || MAXFREQ < freq) { return; } if (strlen(pri) < 17) { if (sys & SYS_GPS) { std::strncpy(codepris[0][freq - 1], pri, 16); codepris[0][freq - 1][15] = '\0'; } if (sys & SYS_GLO) { std::strncpy(codepris[1][freq - 1], pri, 16); codepris[1][freq - 1][15] = '\0'; } if (sys & SYS_GAL) { std::strncpy(codepris[2][freq - 1], pri, 16); codepris[2][freq - 1][15] = '\0'; } if (sys & SYS_QZS) { std::strncpy(codepris[3][freq - 1], pri, 16); codepris[3][freq - 1][15] = '\0'; } if (sys & SYS_SBS) { std::strncpy(codepris[4][freq - 1], pri, 16); codepris[4][freq - 1][15] = '\0'; } if (sys & SYS_BDS) { std::strncpy(codepris[5][freq - 1], pri, 16); codepris[5][freq - 1][15] = '\0'; } if (sys & SYS_IRN) { std::strncpy(codepris[6][freq - 1], pri, 16); codepris[6][freq - 1][15] = '\0'; } } else { trace(1, "pri array is too long"); } } /* get code priority ----------------------------------------------------------- * get code priority for multiple codes in a frequency * args : int sys I system (SYS_???) * unsigned char code I obs code (CODE_???) * char *opt I code options (NULL:no option) * return : priority (15:highest-1:lowest,0:error) *-----------------------------------------------------------------------------*/ int getcodepri(int sys, unsigned char code, const char *opt) { const char *p; const char *optstr; char *obs; char str[8] = ""; int i; int j; switch (sys) { case SYS_GPS: i = 0; optstr = "-GL%2s"; break; case SYS_GLO: i = 1; optstr = "-RL%2s"; break; case SYS_GAL: i = 2; optstr = "-EL%2s"; break; case SYS_QZS: i = 3; optstr = "-JL%2s"; break; case SYS_SBS: i = 4; optstr = "-SL%2s"; break; case SYS_BDS: i = 5; optstr = "-CL%2s"; break; case SYS_IRN: i = 6; optstr = "-IL%2s"; break; default: return 0; } obs = code2obs(code, &j); /* parse code options */ for (p = opt; p && (p = strchr(p, '-')); p++) { if (sscanf(p, optstr, str) < 1 || str[0] != obs[0]) { continue; } return str[1] == obs[1] ? 15 : 0; } /* search code priority */ return (p = strchr(codepris[i][j - 1], obs[1])) ? 14 - static_cast(p - codepris[i][j - 1]) : 0; } /* extract unsigned/signed bits ------------------------------------------------ * extract unsigned/signed bits from byte data * args : unsigned char *buff I byte data * int pos I bit position from start of data (bits) * int len I bit length (bits) (len <= 32) * return : extracted unsigned/signed bits *-----------------------------------------------------------------------------*/ unsigned int getbitu(const unsigned char *buff, int pos, int len) { unsigned int bits = 0; int i; for (i = pos; i < pos + len; i++) { bits = (bits << 1) + ((buff[i / 8] >> (7 - i % 8)) & 1U); } return bits; } int getbits(const unsigned char *buff, int pos, int len) { unsigned int bits = getbitu(buff, pos, len); if (len <= 0 || 32 <= len || !(bits & (1U << (len - 1)))) { return static_cast(bits); } return static_cast(bits | (~0U << len)); /* extend sign */ } /* set unsigned/signed bits ---------------------------------------------------- * set unsigned/signed bits to byte data * args : unsigned char *buff IO byte data * int pos I bit position from start of data (bits) * int len I bit length (bits) (len <= 32) * (unsigned) int I unsigned/signed data * return : none *-----------------------------------------------------------------------------*/ void setbitu(unsigned char *buff, int pos, int len, unsigned int data) { unsigned int mask = 1U << (len - 1); int i; if (len <= 0 || 32 < len) { return; } for (i = pos; i < pos + len; i++, mask >>= 1) { if (data & mask) { buff[i / 8] |= 1U << (7 - i % 8); } else { buff[i / 8] &= ~(1U << (7 - i % 8)); } } } void setbits(unsigned char *buff, int pos, int len, int data) { if (data < 0) { data |= 1 << (len - 1); } else { data &= ~(1 << (len - 1)); /* set sign bit */ } setbitu(buff, pos, len, static_cast(data)); } /* crc-32 parity --------------------------------------------------------------- * compute crc-32 parity for novatel raw * args : unsigned char *buff I data * int len I data length (bytes) * return : crc-32 parity * notes : see NovAtel OEMV firmware manual 1.7 32-bit CRC *-----------------------------------------------------------------------------*/ unsigned int rtk_crc32(const unsigned char *buff, int len) { unsigned int crc = 0; int i; int j; trace(4, "rtk_crc32: len=%d\n", len); for (i = 0; i < len; i++) { crc ^= buff[i]; for (j = 0; j < 8; j++) { if (crc & 1) { crc = (crc >> 1) ^ POLYCRC32; } else { crc >>= 1; } } } return crc; } /* crc-24q parity -------------------------------------------------------------- * compute crc-24q parity for sbas, rtcm3 * args : unsigned char *buff I data * int len I data length (bytes) * return : crc-24Q parity * notes : see reference [2] A.4.3.3 Parity *-----------------------------------------------------------------------------*/ unsigned int rtk_crc24q(const unsigned char *buff, int len) { unsigned int crc = 0; int i; trace(4, "rtk_crc24q: len=%d\n", len); for (i = 0; i < len; i++) { crc = ((crc << 8) & 0xFFFFFF) ^ TBL_CR_C24_Q[(crc >> 16) ^ buff[i]]; } return crc; } /* crc-16 parity --------------------------------------------------------------- * compute crc-16 parity for binex, nvs * args : unsigned char *buff I data * int len I data length (bytes) * return : crc-16 parity * notes : see reference [10] A.3. *-----------------------------------------------------------------------------*/ uint16_t rtk_crc16(const unsigned char *buff, int len) { uint16_t crc = 0; int i; trace(4, "rtk_crc16: len=%d\n", len); for (i = 0; i < len; i++) { crc = (crc << 8) ^ TBL_CR_C16[((crc >> 8) ^ buff[i]) & 0xFF]; } return crc; } /* decode navigation data word ------------------------------------------------- * check party and decode navigation data word * args : unsigned int word I navigation data word (2+30bit) * (previous word D29*-30* + current word D1-30) * unsigned char *data O decoded navigation data without parity * (8bitx3) * return : status (1:ok,0:parity error) * notes : see reference [1] 20.3.5.2 user parity algorithm *-----------------------------------------------------------------------------*/ int decode_word(unsigned int word, unsigned char *data) { const unsigned int hamming[] = { 0xBB1F3480, 0x5D8F9A40, 0xAEC7CD00, 0x5763E680, 0x6BB1F340, 0x8B7A89C0}; unsigned int parity = 0; unsigned int w; int i; trace(5, "decodeword: word=%08x\n", word); if (word & 0x40000000) { word ^= 0x3FFFFFC0; } for (i = 0; i < 6; i++) { parity <<= 1; for (w = (word & hamming[i]) >> 6; w; w >>= 1) { parity ^= w & 1; } } if (parity != (word & 0x3F)) { return 0; } for (i = 0; i < 3; i++) { data[i] = static_cast(word >> (22 - i * 8)); } return 1; } /* new matrix ------------------------------------------------------------------ * allocate memory of matrix * args : int n,m I number of rows and columns of matrix * return : matrix pointer (if n<=0 or m<=0, return NULL) *-----------------------------------------------------------------------------*/ double *mat(int n, int m) { double *p; if (n <= 0 || m <= 0) { return nullptr; } if (!(p = static_cast(malloc(sizeof(double) * n * m)))) { fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m); } return p; } /* new integer matrix ---------------------------------------------------------- * allocate memory of integer matrix * args : int n,m I number of rows and columns of matrix * return : matrix pointer (if n <= 0 or m <= 0, return NULL) *-----------------------------------------------------------------------------*/ int *imat(int n, int m) { int *p; if (n <= 0 || m <= 0) { return nullptr; } if (!(p = static_cast(malloc(sizeof(int) * n * m)))) { fatalerr("integer matrix memory allocation error: n=%d,m=%d\n", n, m); } return p; } /* zero matrix ----------------------------------------------------------------- * generate new zero matrix * args : int n,m I number of rows and columns of matrix * return : matrix pointer (if n <= 0 or m <= 0, return NULL) *-----------------------------------------------------------------------------*/ double *zeros(int n, int m) { double *p; #if NOCALLOC if ((p = mat(n, m))) for (n = n * m - 1; n >= 0; n--) p[n] = 0.0; #else if (n <= 0 || m <= 0) { return nullptr; } if (!(p = static_cast(calloc(sizeof(double), n * m)))) { fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m); } #endif return p; } /* identity matrix ------------------------------------------------------------- * generate new identity matrix * args : int n I number of rows and columns of matrix * return : matrix pointer (if n <= 0, return NULL) *-----------------------------------------------------------------------------*/ double *eye(int n) { double *p; int i; if ((p = zeros(n, n))) { for (i = 0; i < n; i++) { p[i + i * n] = 1.0; } } return p; } /* inner product --------------------------------------------------------------- * inner product of vectors * args : double *a,*b I vector a,b (n x 1) * int n I size of vector a,b * return : a'*b *-----------------------------------------------------------------------------*/ double dot(const double *a, const double *b, int n) { double c = 0.0; while (--n >= 0) { c += a[n] * b[n]; } return c; } /* euclid norm ----------------------------------------------------------------- * euclid norm of vector * args : double *a I vector a (n x 1) * int n I size of vector a * return : || a || *-----------------------------------------------------------------------------*/ double norm_rtk(const double *a, int n) { return std::sqrt(dot(a, a, n)); } /* outer product of 3d vectors ------------------------------------------------- * outer product of 3d vectors * args : double *a,*b I vector a,b (3 x 1) * double *c O outer product (a x b) (3 x 1) * return : none *-----------------------------------------------------------------------------*/ void cross3(const double *a, const double *b, double *c) { c[0] = a[1] * b[2] - a[2] * b[1]; c[1] = a[2] * b[0] - a[0] * b[2]; c[2] = a[0] * b[1] - a[1] * b[0]; } /* normalize 3d vector --------------------------------------------------------- * normalize 3d vector * args : double *a I vector a (3 x 1) * double *b O normlized vector (3 x 1) || b || = 1 * return : status (1:ok,0:error) *-----------------------------------------------------------------------------*/ int normv3(const double *a, double *b) { double r; if ((r = norm_rtk(a, 3)) <= 0.0) { return 0; } b[0] = a[0] / r; b[1] = a[1] / r; b[2] = a[2] / r; return 1; } /* copy matrix ----------------------------------------------------------------- * copy matrix * args : double *A O destination matrix A (n x m) * double *B I source matrix B (n x m) * int n,m I number of rows and columns of matrix * return : none *-----------------------------------------------------------------------------*/ void matcpy(double *A, const double *B, int n, int m) { memcpy(A, B, sizeof(double) * n * m); } /* matrix routines -----------------------------------------------------------*/ /* multiply matrix (wrapper of blas dgemm) ------------------------------------- * multiply matrix by matrix (C=alpha*A*B+beta*C) * args : char *tr I transpose flags ("N":normal,"T":transpose) * int n,k,m I size of (transposed) matrix A,B * double alpha I alpha * double *A,*B I (transposed) matrix A (n x m), B (m x k) * double beta I beta * double *C IO matrix C (n x k) * return : none *-----------------------------------------------------------------------------*/ void matmul(const char *tr, int n, int k, int m, double alpha, const double *A, const double *B, double beta, double *C) { int lda = tr[0] == 'T' ? m : n; int ldb = tr[1] == 'T' ? k : m; dgemm_(const_cast(tr), const_cast(tr) + 1, &n, &k, &m, &alpha, const_cast(A), &lda, const_cast(B), &ldb, &beta, C, &n); } /* inverse of matrix ----------------------------------------------------------- * inverse of matrix (A=A^-1) * args : double *A IO matrix (n x n) * int n I size of matrix A * return : status (0:ok,0>:error) *-----------------------------------------------------------------------------*/ int matinv(double *A, int n) { double *work; int info; int lwork = n * 16; int *ipiv = imat(n, 1); work = mat(lwork, 1); dgetrf_(&n, &n, A, &n, ipiv, &info); if (!info) { dgetri_(&n, A, &n, ipiv, work, &lwork, &info); } free(ipiv); free(work); return info; } /* solve linear equation ------------------------------------------------------- * solve linear equation (X=A\Y or X=A'\Y) * args : char *tr I transpose flag ("N":normal,"T":transpose) * double *A I input matrix A (n x n) * double *Y I input matrix Y (n x m) * int n,m I size of matrix A,Y * double *X O X=A\Y or X=A'\Y (n x m) * return : status (0:ok,0>:error) * notes : matirix stored by column-major order (fortran convention) * X can be same as Y *-----------------------------------------------------------------------------*/ int solve(const char *tr, const double *A, const double *Y, int n, int m, double *X) { double *B = mat(n, n); int info; int *ipiv = imat(n, 1); matcpy(B, A, n, n); matcpy(X, Y, n, m); dgetrf_(&n, &n, B, &n, ipiv, &info); if (!info) { dgetrs_(const_cast(tr), &n, &m, B, &n, ipiv, X, &n, &info); } free(ipiv); free(B); return info; } /* end of matrix routines ----------------------------------------------------*/ /* least square estimation ----------------------------------------------------- * least square estimation by solving normal equation (x=(A*A')^-1*A*y) * args : double *A I transpose of (weighted) design matrix (n x m) * double *y I (weighted) measurements (m x 1) * int n,m I number of parameters and measurements (n <= m) * double *x O estmated parameters (n x 1) * double *Q O esimated parameters covariance matrix (n x n) * return : status (0:ok,0>:error) * notes : for weighted least square, replace A and y by A*w and w*y (w=W^(1/2)) * matirix stored by column-major order (fortran convention) *-----------------------------------------------------------------------------*/ int lsq(const double *A, const double *y, int n, int m, double *x, double *Q) { double *Ay; int info; if (m < n) { return -1; } Ay = mat(n, 1); matmul("NN", n, 1, m, 1.0, A, y, 0.0, Ay); /* Ay=A*y */ matmul("NT", n, n, m, 1.0, A, A, 0.0, Q); /* Q=A*A' */ if (!(info = matinv(Q, n))) { matmul("NN", n, 1, n, 1.0, Q, Ay, 0.0, x); /* x=Q^-1*Ay */ } free(Ay); return info; } /* kalman filter --------------------------------------------------------------- * kalman filter state update as follows: * * K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P * * args : double *x I states vector (n x 1) * double *P I covariance matrix of states (n x n) * double *H I transpose of design matrix (n x m) * double *v I innovation (measurement - model) (m x 1) * double *R I covariance matrix of measurement error (m x m) * int n,m I number of states and measurements * double *xp O states vector after update (n x 1) * double *Pp O covariance matrix of states after update (n x n) * return : status (0:ok,<0:error) * notes : matirix stored by column-major order (fortran convention) * if state x[i]==0.0, not updates state x[i]/P[i+i*n] *-----------------------------------------------------------------------------*/ int filter_(const double *x, const double *P, const double *H, const double *v, const double *R, int n, int m, double *xp, double *Pp) { double *F = mat(n, m); double *Q = mat(m, m); double *K = mat(n, m); double *I = eye(n); int info; matcpy(Q, R, m, m); matcpy(xp, x, n, 1); matmul("NN", n, m, n, 1.0, P, H, 0.0, F); /* Q=H'*P*H+R */ matmul("TN", m, m, n, 1.0, H, F, 1.0, Q); if (!(info = matinv(Q, m))) { matmul("NN", n, m, m, 1.0, F, Q, 0.0, K); /* K=P*H*Q^-1 */ matmul("NN", n, 1, m, 1.0, K, v, 1.0, xp); /* xp=x+K*v */ matmul("NT", n, n, m, -1.0, K, H, 1.0, I); /* Pp=(I-K*H')*P */ matmul("NN", n, n, n, 1.0, I, P, 0.0, Pp); } free(F); free(Q); free(K); free(I); return info; } int filter(double *x, double *P, const double *H, const double *v, const double *R, int n, int m) { double *x_; double *xp_; double *P_; double *Pp_; double *H_; int i; int j; int k; int info; int *ix; ix = imat(n, 1); for (i = k = 0; i < n; i++) { if (x[i] != 0.0 && P[i + i * n] > 0.0) { ix[k++] = i; } } x_ = mat(k, 1); xp_ = mat(k, 1); P_ = mat(k, k); Pp_ = mat(k, k); for (i = 0; i < k; i++) { for (j = 0; j < k; j++) { Pp_[i * k + j] = 0.0; } } H_ = mat(k, m); for (i = 0; i < k; i++) { x_[i] = x[ix[i]]; for (j = 0; j < k; j++) { P_[i + j * k] = P[ix[i] + ix[j] * n]; } for (j = 0; j < m; j++) { H_[i + j * k] = H[ix[i] + j * n]; } } info = filter_(x_, P_, H_, v, R, k, m, xp_, Pp_); for (i = 0; i < k; i++) { x[ix[i]] = xp_[i]; for (j = 0; j < k; j++) { P[ix[i] + ix[j] * n] = Pp_[i + j * k]; } } free(ix); free(x_); free(xp_); free(P_); free(Pp_); free(H_); return info; } /* smoother -------------------------------------------------------------------- * combine forward and backward filters by fixed-interval smoother as follows: * * xs=Qs*(Qf^-1*xf+Qb^-1*xb), Qs=(Qf^-1+Qb^-1)^-1) * * args : double *xf I forward solutions (n x 1) * args : double *Qf I forward solutions covariance matrix (n x n) * double *xb I backward solutions (n x 1) * double *Qb I backward solutions covariance matrix (n x n) * int n I number of solutions * double *xs O smoothed solutions (n x 1) * double *Qs O smoothed solutions covariance matrix (n x n) * return : status (0:ok,0>:error) * notes : see reference [4] 5.2 * matirix stored by column-major order (fortran convention) *-----------------------------------------------------------------------------*/ int smoother(const double *xf, const double *Qf, const double *xb, const double *Qb, int n, double *xs, double *Qs) { double *invQf = mat(n, n); double *invQb = mat(n, n); double *xx = mat(n, 1); int i; int info = -1; matcpy(invQf, Qf, n, n); matcpy(invQb, Qb, n, n); if (!matinv(invQf, n) && !matinv(invQb, n)) { for (i = 0; i < n * n; i++) { Qs[i] = invQf[i] + invQb[i]; } if (!(info = matinv(Qs, n))) { matmul("NN", n, 1, n, 1.0, invQf, xf, 0.0, xx); matmul("NN", n, 1, n, 1.0, invQb, xb, 1.0, xx); matmul("NN", n, 1, n, 1.0, Qs, xx, 0.0, xs); } } free(invQf); free(invQb); free(xx); return info; } /* print matrix ---------------------------------------------------------------- * print matrix to stdout * args : double *A I matrix A (n x m) * int n,m I number of rows and columns of A * int p,q I total columns, columns under decimal point * (FILE *fp I output file pointer) * return : none * notes : matirix stored by column-major order (fortran convention) *-----------------------------------------------------------------------------*/ void matfprint(const double A[], int n, int m, int p, int q, FILE *fp) { int i; int j; for (i = 0; i < n; i++) { for (j = 0; j < m; j++) { fprintf(fp, " %*.*f", p, q, A[i + j * n]); } fprintf(fp, "\n"); } } void matsprint(const double A[], int n, int m, int p, int q, std::string &buffer) { int i; int j; buffer += '\n'; for (i = 0; i < n; i++) { for (j = 0; j < m; j++) { char buf_[256]; std::snprintf(buf_, sizeof(buf_), " %*.*f", p, q, A[i + j * n]); std::string s(buf_); buffer += s; } buffer += '\n'; } } void matprint(const double A[], int n, int m, int p, int q) { matfprint(A, n, m, p, q, stdout); } /* string to number ------------------------------------------------------------ * convert substring in string to number * args : char *s I string ("... nnn.nnn ...") * int i,n I substring position and width * return : converted number (0.0:error) *-----------------------------------------------------------------------------*/ double str2num(const char *s, int i, int n) { double value; char str[256]; char *p = str; if (i < 0 || static_cast(strlen(s)) < i || static_cast(sizeof(str)) - 1 < n) { return 0.0; } for (s += i; *s && --n >= 0; s++) { *p++ = *s == 'd' || *s == 'D' ? 'E' : *s; } *p = '\0'; return sscanf(str, "%lf", &value) == 1 ? value : 0.0; } /* string to time -------------------------------------------------------------- * convert substring in string to gtime_t struct * args : char *s I string ("... yyyy mm dd hh mm ss ...") * int i,n I substring position and width * gtime_t *t O gtime_t struct * return : status (0:ok,0>:error) *-----------------------------------------------------------------------------*/ int str2time(const char *s, int i, int n, gtime_t *t) { double ep[6]; char str[256]; char *p = str; if (i < 0 || static_cast(strlen(s)) < i || static_cast(sizeof(str)) - 1 < i) { return -1; } for (s += i; *s && --n >= 0;) { *p++ = *s++; } *p = '\0'; if (sscanf(str, "%lf %lf %lf %lf %lf %lf", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5) < 6) { return -1; } if (ep[0] < 100.0) { ep[0] += ep[0] < 80.0 ? 2000.0 : 1900.0; } *t = epoch2time(ep); return 0; } /* convert calendar day/time to time ------------------------------------------- * convert calendar day/time to gtime_t struct * args : double *ep I day/time {year,month,day,hour,min,sec} * return : gtime_t struct * notes : proper in 1970-2037 or 1970-2099 (64bit time_t) *-----------------------------------------------------------------------------*/ gtime_t epoch2time(const double *ep) { const int doy[] = {1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}; gtime_t time = {0, 0}; int days; int sec; int year = static_cast(ep[0]); int mon = static_cast(ep[1]); int day = static_cast(ep[2]); if (year < 1970 || 2099 < year || mon < 1 || 12 < mon) { return time; } /* leap year if year%4==0 in 1901-2099 */ days = (year - 1970) * 365 + (year - 1969) / 4 + doy[mon - 1] + day - 2 + (year % 4 == 0 && mon >= 3 ? 1 : 0); sec = static_cast(floor(ep[5])); time.time = static_cast(days) * 86400 + static_cast(ep[3]) * 3600 + static_cast(ep[4]) * 60 + sec; time.sec = ep[5] - sec; return time; } /* time to calendar day/time --------------------------------------------------- * convert gtime_t struct to calendar day/time * args : gtime_t t I gtime_t struct * double *ep O day/time {year,month,day,hour,min,sec} * return : none * notes : proper in 1970-2037 or 1970-2099 (64bit time_t) *-----------------------------------------------------------------------------*/ void time2epoch(gtime_t t, double *ep) { const int mday[] = {/* # of days in a month */ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; int days; int sec; int mon; int day; /* leap year if year%4==0 in 1901-2099 */ days = static_cast(t.time / 86400); sec = static_cast(t.time - static_cast(days) * 86400); for (day = days % 1461, mon = 0; mon < 48; mon++) { if (day >= mday[mon]) { day -= mday[mon]; } else { break; } } ep[0] = 1970 + static_cast(days / 1461) * 4 + static_cast(mon / 12); ep[1] = mon % 12 + 1; ep[2] = day + 1; ep[3] = static_cast(sec / 3600); ep[4] = static_cast(sec % 3600 / 60); ep[5] = sec % 60 + t.sec; } /* gps time to time ------------------------------------------------------------ * convert week and tow in gps time to gtime_t struct * args : int week I week number in gps time * double sec I time of week in gps time (s) * return : gtime_t struct *-----------------------------------------------------------------------------*/ gtime_t gpst2time(int week, double sec) { gtime_t t = epoch2time(GPST0); if (sec < -1e9 || 1e9 < sec) { sec = 0.0; } t.time += static_cast(86400) * 7 * week + static_cast(sec); t.sec = sec - static_cast(sec); return t; } /* time to gps time ------------------------------------------------------------ * convert gtime_t struct to week and tow in gps time * args : gtime_t t I gtime_t struct * int *week IO week number in gps time (NULL: no output) * return : time of week in gps time (s) *-----------------------------------------------------------------------------*/ double time2gpst(gtime_t t, int *week) { gtime_t t0 = epoch2time(GPST0); time_t sec = t.time - t0.time; int w = static_cast(sec / 604800); if (week) { *week = w; } return (static_cast(sec - static_cast(w * 604800)) + t.sec); } /* galileo system time to time ------------------------------------------------- * convert week and tow in galileo system time (gst) to gtime_t struct * args : int week I week number in gst * double sec I time of week in gst (s) * return : gtime_t struct *-----------------------------------------------------------------------------*/ gtime_t gst2time(int week, double sec) { gtime_t t = epoch2time(GST0); if (sec < -1e9 || 1e9 < sec) { sec = 0.0; } t.time += static_cast(86400) * 7 * week + static_cast(sec); t.sec = sec - static_cast(sec); return t; } /* time to galileo system time ------------------------------------------------- * convert gtime_t struct to week and tow in galileo system time (gst) * args : gtime_t t I gtime_t struct * int *week IO week number in gst (NULL: no output) * return : time of week in gst (s) *-----------------------------------------------------------------------------*/ double time2gst(gtime_t t, int *week) { gtime_t t0 = epoch2time(GST0); time_t sec = t.time - t0.time; int w = static_cast(sec / (86400 * 7)); if (week) { *week = w; } return (sec - static_cast(w) * 86400 * 7) + t.sec; } /* beidou time (bdt) to time --------------------------------------------------- * convert week and tow in beidou time (bdt) to gtime_t struct * args : int week I week number in bdt * double sec I time of week in bdt (s) * return : gtime_t struct *-----------------------------------------------------------------------------*/ gtime_t bdt2time(int week, double sec) { gtime_t t = epoch2time(BDT0); if (sec < -1e9 || 1e9 < sec) { sec = 0.0; } t.time += static_cast(86400) * 7 * week + static_cast(sec); t.sec = sec - static_cast(sec); return t; } /* time to beidouo time (bdt) -------------------------------------------------- * convert gtime_t struct to week and tow in beidou time (bdt) * args : gtime_t t I gtime_t struct * int *week IO week number in bdt (NULL: no output) * return : time of week in bdt (s) *-----------------------------------------------------------------------------*/ double time2bdt(gtime_t t, int *week) { gtime_t t0 = epoch2time(BDT0); time_t sec = t.time - t0.time; int w = static_cast(sec / (86400 * 7)); if (week) { *week = w; } return (sec - static_cast(w) * 86400 * 7) + t.sec; } /* add time -------------------------------------------------------------------- * add time to gtime_t struct * args : gtime_t t I gtime_t struct * double sec I time to add (s) * return : gtime_t struct (t+sec) *-----------------------------------------------------------------------------*/ gtime_t timeadd(gtime_t t, double sec) { double tt; t.sec += sec; tt = floor(t.sec); t.time += static_cast(tt); t.sec -= tt; return t; } /* time difference ------------------------------------------------------------- * difference between gtime_t structs * args : gtime_t t1,t2 I gtime_t structs * return : time difference (t1-t2) (s) *-----------------------------------------------------------------------------*/ double timediff(gtime_t t1, gtime_t t2) { return difftime(t1.time, t2.time) + t1.sec - t2.sec; } /* time difference accounting with week crossovers ----------------------------- * difference between gtime_t structs * args : gtime_t t1,t2 I gtime_t structs * return : time difference (t1-t2) (s) *-----------------------------------------------------------------------------*/ double timediffweekcrossover(gtime_t t1, gtime_t t2) { // as stated in IS-GPS-200K table 20-IV footnote among other parts of the ICD, // if tk=(t - toe) > 302400s then tk = tk - s // if tk=(t - toe) < -302400s then tk = tk + 604800s double tk = difftime(t1.time, t2.time) + t1.sec - t2.sec; if (tk > 302400.0) { tk -= 604800.0; } else if (tk < -302400.0) { tk += 604800.0; } return tk; } /* get current time in utc ----------------------------------------------------- * get current time in utc * args : none * return : current time in utc *-----------------------------------------------------------------------------*/ gtime_t timeget() { gtime_t time; double ep[6] = {}; struct timeval tv { }; struct tm *tt; if (!gettimeofday(&tv, nullptr) && (tt = gmtime(&tv.tv_sec))) { ep[0] = tt->tm_year + 1900; ep[1] = tt->tm_mon + 1; ep[2] = tt->tm_mday; ep[3] = tt->tm_hour; ep[4] = tt->tm_min; ep[5] = tt->tm_sec + tv.tv_usec * 1e-6; } time = epoch2time(ep); #ifdef CPUTIME_IN_GPST /* cputime operated in gpst */ time = gpst2utc(time); #endif return time; } /* set current time in utc ----------------------------------------------------- * set current time in utc * args : gtime_t I current time in utc * return : none * notes : just set time offset between cpu time and current time * the time offset is reflected to only timeget() * not reentrant *-----------------------------------------------------------------------------*/ void timeset(gtime_t t) { timeoffset_ += timediff(t, timeget()); } /* read leap seconds table by text -------------------------------------------*/ int read_leaps_text(FILE *fp) { char buff[256]; char *p; int i; int n = 0; int ep[6]; int ls; rewind(fp); while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS) { if ((p = strchr(buff, '#'))) { *p = '\0'; } if (sscanf(buff, "%d %d %d %d %d %d %d", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5, &ls) < 7) { continue; } for (i = 0; i < 6; i++) { leaps[n][i] = ep[i]; } leaps[n++][6] = ls; } return n; } /* read leap seconds table by usno -------------------------------------------*/ int read_leaps_usno(FILE *fp) { static const char *months[] = { "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"}; double jd; double tai_utc; char buff[256]; char month[32]; char ls[MAXLEAPS][7] = {}; int i; int j; int y; int m; int d; int n = 0; rewind(fp); while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS) { if (sscanf(buff, "%d %s %d =JD %lf TAI-UTC= %lf", &y, month, &d, &jd, &tai_utc) < 5) { continue; } if (y < 1980) { continue; } for (m = 1; m <= 12; m++) { if (!strcmp(months[m - 1], month)) { break; } } if (m >= 13) { continue; } ls[n][0] = y; ls[n][1] = m; ls[n][2] = d; ls[n++][6] = static_cast(19.0 - tai_utc); } for (i = 0; i < n; i++) { for (j = 0; j < 7; j++) { leaps[i][j] = ls[n - i - 1][j]; } } return n; } /* read leap seconds table ----------------------------------------------------- * read leap seconds table * args : char *file I leap seconds table file * return : status (1:ok,0:error) * notes : The leap second table should be as follows or leapsec.dat provided * by USNO. * (1) The records in the table file cosist of the following fields: * year month day hour min sec UTC-GPST(s) * (2) The date and time indicate the start UTC time for the UTC-GPST * (3) The date and time should be descending order. *-----------------------------------------------------------------------------*/ int read_leaps(const char *file) { FILE *fp; int i; int n; if (!(fp = fopen(file, "re"))) { return 0; } /* read leap seconds table by text or usno */ if (!(n = read_leaps_text(fp)) && !(n = read_leaps_usno(fp))) { fclose(fp); return 0; } for (i = 0; i < 7; i++) { leaps[n][i] = 0.0; } fclose(fp); return 1; } /* gpstime to utc -------------------------------------------------------------- * convert gpstime to utc considering leap seconds * args : gtime_t t I time expressed in gpstime * return : time expressed in utc * notes : ignore slight time offset under 100 ns *-----------------------------------------------------------------------------*/ gtime_t gpst2utc(gtime_t t) { gtime_t tu; int i; for (i = 0; leaps[i][0] > 0; i++) { tu = timeadd(t, leaps[i][6]); if (timediff(tu, epoch2time(leaps[i])) >= 0.0) { return tu; } } return t; } /* utc to gpstime -------------------------------------------------------------- * convert utc to gpstime considering leap seconds * args : gtime_t t I time expressed in utc * return : time expressed in gpstime * notes : ignore slight time offset under 100 ns *-----------------------------------------------------------------------------*/ gtime_t utc2gpst(gtime_t t) { int i; for (i = 0; leaps[i][0] > 0; i++) { if (timediff(t, epoch2time(leaps[i])) >= 0.0) { return timeadd(t, -leaps[i][6]); } } return t; } /* gpstime to bdt -------------------------------------------------------------- * convert gpstime to bdt (beidou navigation satellite system time) * args : gtime_t t I time expressed in gpstime * return : time expressed in bdt * notes : ref [8] 3.3, 2006/1/1 00:00 BDT = 2006/1/1 00:00 UTC * no leap seconds in BDT * ignore slight time offset under 100 ns *-----------------------------------------------------------------------------*/ gtime_t gpst2bdt(gtime_t t) { return timeadd(t, -14.0); } /* bdt to gpstime -------------------------------------------------------------- * convert bdt (beidou navigation satellite system time) to gpstime * args : gtime_t t I time expressed in bdt * return : time expressed in gpstime * notes : see gpst2bdt() *-----------------------------------------------------------------------------*/ gtime_t bdt2gpst(gtime_t t) { return timeadd(t, 14.0); } /* time to day and sec -------------------------------------------------------*/ double time2sec(gtime_t time, gtime_t *day) { double ep[6]; double sec; time2epoch(time, ep); sec = ep[3] * 3600.0 + ep[4] * 60.0 + ep[5]; ep[3] = ep[4] = ep[5] = 0.0; *day = epoch2time(ep); return sec; } /* utc to gmst ----------------------------------------------------------------- * convert utc to gmst (Greenwich mean sidereal time) * args : gtime_t t I time expressed in utc * double ut1_utc I UT1-UTC (s) * return : gmst (rad) *-----------------------------------------------------------------------------*/ double utc2gmst(gtime_t t, double ut1_utc) { const double ep2000[] = {2000, 1, 1, 12, 0, 0}; gtime_t tut; gtime_t tut0; double ut; double t1; double t2; double t3; double gmst0; double gmst; tut = timeadd(t, ut1_utc); ut = time2sec(tut, &tut0); t1 = timediff(tut0, epoch2time(ep2000)) / 86400.0 / 36525.0; t2 = t1 * t1; t3 = t2 * t1; gmst0 = 24110.54841 + 8640184.812866 * t1 + 0.093104 * t2 - 6.2E-6 * t3; gmst = gmst0 + 1.002737909350795 * ut; return fmod(gmst, 86400.0) * GNSS_PI / 43200.0; /* 0 <= gmst <= 2*PI */ } /* time to string -------------------------------------------------------------- * convert gtime_t struct to string * args : gtime_t t I gtime_t struct * char *s O string ("yyyy/mm/dd hh:mm:ss.ssss") * int n I number of decimals * return : none *-----------------------------------------------------------------------------*/ void time2str(gtime_t t, char *s, int n) { double ep[6]; if (n < 0) { n = 0; } else if (n > 12) { n = 12; } if (1.0 - t.sec < 0.5 / pow(10.0, n)) { t.time++; t.sec = 0.0; }; time2epoch(t, ep); std::snprintf(s, MAXSTATMSG, "%04.0f/%02.0f/%02.0f %02.0f:%02.0f:%0*.*f", ep[0], ep[1], ep[2], ep[3], ep[4], n <= 0 ? 2 : n + 3, n <= 0 ? 0 : n, ep[5]); } /* get time string ------------------------------------------------------------- * get time string * args : gtime_t t I gtime_t struct * int n I number of decimals * return : time string * notes : not reentrant, do not use multiple in a function *-----------------------------------------------------------------------------*/ char *time_str(gtime_t t, int n) { static char buff[64]; time2str(t, buff, n); return buff; } /* time to day of year --------------------------------------------------------- * convert time to day of year * args : gtime_t t I gtime_t struct * return : day of year (days) *-----------------------------------------------------------------------------*/ double time2doy(gtime_t t) { double ep[6]; time2epoch(t, ep); ep[1] = ep[2] = 1.0; ep[3] = ep[4] = ep[5] = 0.0; return timediff(t, epoch2time(ep)) / 86400.0 + 1.0; } /* adjust gps week number ------------------------------------------------------ * adjust gps week number using cpu time * args : int week I not-adjusted gps week number * return : adjusted gps week number *-----------------------------------------------------------------------------*/ int adjgpsweek(int week, bool pre_2009_file) { // int w; // if (week < 512) // { // //assume receiver date > 7 april 2019 // w = week + 2048; //add weeks from 6-january-1980 to week rollover in 6 april 2019 // } // else // { // //assume receiver date < 7 april 2019 // w = week + 1024; //add weeks from 6-january-1980 to week rollover in 21 august 1999 // } int w; if (week > 1023) { return week; } if (pre_2009_file == false) { (void)time2gpst(utc2gpst(timeget()), &w); if (w < 1560) { w = 1560; /* use 2009/12/1 if time is earlier than 2009/12/1 */ } return week + (w - week + 512) / 1024 * 1024; } else { w = week + 1024; // add weeks from 6-january-1980 to week rollover in 21 august 1999 return w; } } /* get tick time --------------------------------------------------------------- * get current tick in ms * args : none * return : current tick in ms *-----------------------------------------------------------------------------*/ unsigned int tickget() { struct timespec tp = {0, 0}; struct timeval tv = {0, 0}; #ifdef CLOCK_MONOTONIC_RAW /* linux kernel > 2.6.28 */ if (!clock_gettime(CLOCK_MONOTONIC_RAW, &tp)) { return tp.tv_sec * 1000U + tp.tv_nsec / 1000000U; } gettimeofday(&tv, nullptr); return tv.tv_sec * 1000U + tv.tv_usec / 1000U; #else gettimeofday(&tv, NULL); return tv.tv_sec * 1000u + tv.tv_usec / 1000u; #endif } /* sleep ms -------------------------------------------------------------------- * sleep ms * args : int ms I milliseconds to sleep (<0:no sleep) * return : none *-----------------------------------------------------------------------------*/ void sleepms(int ms) { struct timespec ts = {0, 0}; if (ms <= 0) { return; } ts.tv_sec = static_cast(ms / 1000); ts.tv_nsec = static_cast(ms % 1000 * 1000000); nanosleep(&ts, nullptr); } /* convert degree to deg-min-sec ----------------------------------------------- * convert degree to degree-minute-second * args : double deg I degree * double *dms O degree-minute-second {deg, min, sec} * int ndec I number of decimals of second * return : none *-----------------------------------------------------------------------------*/ void deg2dms(double deg, double *dms, int ndec) { double sign = deg < 0.0 ? -1.0 : 1.0; double a = fabs(deg); double unit = pow(0.1, ndec); dms[0] = floor(a); a = (a - dms[0]) * 60.0; dms[1] = floor(a); a = (a - dms[1]) * 60.0; dms[2] = floor(a / unit + 0.5) * unit; if (dms[2] >= 60.0) { dms[2] = 0.0; dms[1] += 1.0; if (dms[1] >= 60.0) { dms[1] = 0.0; dms[0] += 1.0; } } dms[0] *= sign; } void deg2dms(double deg, double *dms) { double sign = deg < 0.0 ? -1.0 : 1.0; double a = fabs(deg); dms[0] = floor(a); a = (a - dms[0]) * 60.0; dms[1] = floor(a); a = (a - dms[1]) * 60.0; dms[2] = a; dms[0] *= sign; } /* convert deg-min-sec to degree ----------------------------------------------- * convert degree-minute-second to degree * args : double *dms I degree-minute-second {deg,min,sec} * return : degree *-----------------------------------------------------------------------------*/ double dms2deg(const double *dms) { double sign = dms[0] < 0.0 ? -1.0 : 1.0; return sign * (fabs(dms[0]) + dms[1] / 60.0 + dms[2] / 3600.0); } /* transform ecef to geodetic position ------------------------------------------ * transform ecef position to geodetic position * args : double *r I ecef position {x,y,z} (m) * double *pos O geodetic position {lat,lon,h} (rad,m) * return : none * notes : WGS84, ellipsoidal height *-----------------------------------------------------------------------------*/ void ecef2pos(const double *r, double *pos) { double e2 = FE_WGS84 * (2.0 - FE_WGS84); double r2 = dot(r, r, 2); double z; double zk; double v = RE_WGS84; double sinp; for (z = r[2], zk = 0.0; fabs(z - zk) >= 1e-4;) { zk = z; sinp = z / sqrt(r2 + z * z); v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp); z = r[2] + v * e2 * sinp; } pos[0] = r2 > 1e-12 ? atan(z / sqrt(r2)) : (r[2] > 0.0 ? GNSS_PI / 2.0 : -GNSS_PI / 2.0); pos[1] = r2 > 1e-12 ? atan2(r[1], r[0]) : 0.0; pos[2] = sqrt(r2 + z * z) - v; } /* transform geodetic to ecef position ----------------------------------------- * transform geodetic position to ecef position * args : double *pos I geodetic position {lat, lon,h} (rad,m) * double *r O ecef position {x,y,z} (m) * return : none * notes : WGS84, ellipsoidal height *-----------------------------------------------------------------------------*/ void pos2ecef(const double *pos, double *r) { double sinp = sin(pos[0]); double cosp = cos(pos[0]); double sinl = sin(pos[1]); double cosl = cos(pos[1]); double e2 = FE_WGS84 * (2.0 - FE_WGS84); double v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp); r[0] = (v + pos[2]) * cosp * cosl; r[1] = (v + pos[2]) * cosp * sinl; r[2] = (v * (1.0 - e2) + pos[2]) * sinp; } /* ecef to local coordinate transformation matrix ------------------------------ * compute ecef to local coordinate transformation matrix * args : double *pos I geodetic position {lat,lon} (rad) * double *E O ecef to local coord transformation matrix (3x3) * return : none * notes : matirix stored by column-major order (fortran convention) *-----------------------------------------------------------------------------*/ void xyz2enu(const double *pos, double *E) { double sinp = sin(pos[0]); double cosp = cos(pos[0]); double sinl = sin(pos[1]); double cosl = cos(pos[1]); E[0] = -sinl; E[3] = cosl; E[6] = 0.0; E[1] = -sinp * cosl; E[4] = -sinp * sinl; E[7] = cosp; E[2] = cosp * cosl; E[5] = cosp * sinl; E[8] = sinp; } /* transform ecef vector to local tangental coordinate ------------------------- * transform ecef vector to local tangental coordinate * args : double *pos I geodetic position {lat,lon} (rad) * double *r I vector in ecef coordinate {x,y,z} * double *e O vector in local tangental coordinate {e,n,u} * return : none *-----------------------------------------------------------------------------*/ void ecef2enu(const double *pos, const double *r, double *e) { double E[9]; xyz2enu(pos, E); matmul("NN", 3, 1, 3, 1.0, E, r, 0.0, e); } /* transform local vector to ecef coordinate ----------------------------------- * transform local tangental coordinate vector to ecef * args : double *pos I geodetic position {lat,lon} (rad) * double *e I vector in local tangental coordinate {e,n,u} * double *r O vector in ecef coordinate {x,y,z} * return : none *-----------------------------------------------------------------------------*/ void enu2ecef(const double *pos, const double *e, double *r) { double E[9]; xyz2enu(pos, E); matmul("TN", 3, 1, 3, 1.0, E, e, 0.0, r); } /* transform covariance to local tangental coordinate -------------------------- * transform ecef covariance to local tangental coordinate * args : double *pos I geodetic position {lat, lon} (rad) * double *P I covariance in ecef coordinate * double *Q O covariance in local tangental coordinate * return : none *-----------------------------------------------------------------------------*/ void covenu(const double *pos, const double *P, double *Q) { double E[9]; double EP[9]; xyz2enu(pos, E); matmul("NN", 3, 3, 3, 1.0, E, P, 0.0, EP); matmul("NT", 3, 3, 3, 1.0, EP, E, 0.0, Q); } /* transform local enu coordinate covariance to xyz-ecef ----------------------- * transform local enu covariance to xyz-ecef coordinate * args : double *pos I geodetic position {lat,lon} (rad) * double *Q I covariance in local enu coordinate * double *P O covariance in xyz-ecef coordinate * return : none *-----------------------------------------------------------------------------*/ void covecef(const double *pos, const double *Q, double *P) { double E[9]; double EQ[9]; xyz2enu(pos, E); matmul("TN", 3, 3, 3, 1.0, E, Q, 0.0, EQ); matmul("NN", 3, 3, 3, 1.0, EQ, E, 0.0, P); } /* astronomical arguments: f={l,l',F,D,OMG} (rad) ----------------------------*/ void ast_args(double t, double *f) { static const double fc[][5] = {/* coefficients for iau 1980 nutation */ {134.96340251, 1717915923.2178, 31.8792, 0.051635, -0.00024470}, {357.52910918, 129596581.0481, -0.5532, 0.000136, -0.00001149}, {93.27209062, 1739527262.8478, -12.7512, -0.001037, 0.00000417}, {297.85019547, 1602961601.2090, -6.3706, 0.006593, -0.00003169}, {125.04455501, -6962890.2665, 7.4722, 0.007702, -0.00005939}}; double tt[4]; int i; int j; for (tt[0] = t, i = 1; i < 4; i++) { tt[i] = tt[i - 1] * t; } for (i = 0; i < 5; i++) { f[i] = fc[i][0] * 3600.0; for (j = 0; j < 4; j++) { f[i] += fc[i][j + 1] * tt[j]; } f[i] = fmod(f[i] * AS2R, 2.0 * GNSS_PI); } } /* iau 1980 nutation ---------------------------------------------------------*/ void nut_iau1980(double t, const double *f, double *dpsi, double *deps) { static const double nut[106][10] = { {0, 0, 0, 0, 1, -6798.4, -171996, -174.2, 92025, 8.9}, {0, 0, 2, -2, 2, 182.6, -13187, -1.6, 5736, -3.1}, {0, 0, 2, 0, 2, 13.7, -2274, -0.2, 977, -0.5}, {0, 0, 0, 0, 2, -3399.2, 2062, 0.2, -895, 0.5}, {0, -1, 0, 0, 0, -365.3, -1426, 3.4, 54, -0.1}, {1, 0, 0, 0, 0, 27.6, 712, 0.1, -7, 0.0}, {0, 1, 2, -2, 2, 121.7, -517, 1.2, 224, -0.6}, {0, 0, 2, 0, 1, 13.6, -386, -0.4, 200, 0.0}, {1, 0, 2, 0, 2, 9.1, -301, 0.0, 129, -0.1}, {0, -1, 2, -2, 2, 365.2, 217, -0.5, -95, 0.3}, {-1, 0, 0, 2, 0, 31.8, 158, 0.0, -1, 0.0}, {0, 0, 2, -2, 1, 177.8, 129, 0.1, -70, 0.0}, {-1, 0, 2, 0, 2, 27.1, 123, 0.0, -53, 0.0}, {1, 0, 0, 0, 1, 27.7, 63, 0.1, -33, 0.0}, {0, 0, 0, 2, 0, 14.8, 63, 0.0, -2, 0.0}, {-1, 0, 2, 2, 2, 9.6, -59, 0.0, 26, 0.0}, {-1, 0, 0, 0, 1, -27.4, -58, -0.1, 32, 0.0}, {1, 0, 2, 0, 1, 9.1, -51, 0.0, 27, 0.0}, {-2, 0, 0, 2, 0, -205.9, -48, 0.0, 1, 0.0}, {-2, 0, 2, 0, 1, 1305.5, 46, 0.0, -24, 0.0}, {0, 0, 2, 2, 2, 7.1, -38, 0.0, 16, 0.0}, {2, 0, 2, 0, 2, 6.9, -31, 0.0, 13, 0.0}, {2, 0, 0, 0, 0, 13.8, 29, 0.0, -1, 0.0}, {1, 0, 2, -2, 2, 23.9, 29, 0.0, -12, 0.0}, {0, 0, 2, 0, 0, 13.6, 26, 0.0, -1, 0.0}, {0, 0, 2, -2, 0, 173.3, -22, 0.0, 0, 0.0}, {-1, 0, 2, 0, 1, 27.0, 21, 0.0, -10, 0.0}, {0, 2, 0, 0, 0, 182.6, 17, -0.1, 0, 0.0}, {0, 2, 2, -2, 2, 91.3, -16, 0.1, 7, 0.0}, {-1, 0, 0, 2, 1, 32.0, 16, 0.0, -8, 0.0}, {0, 1, 0, 0, 1, 386.0, -15, 0.0, 9, 0.0}, {1, 0, 0, -2, 1, -31.7, -13, 0.0, 7, 0.0}, {0, -1, 0, 0, 1, -346.6, -12, 0.0, 6, 0.0}, {2, 0, -2, 0, 0, -1095.2, 11, 0.0, 0, 0.0}, {-1, 0, 2, 2, 1, 9.5, -10, 0.0, 5, 0.0}, {1, 0, 2, 2, 2, 5.6, -8, 0.0, 3, 0.0}, {0, -1, 2, 0, 2, 14.2, -7, 0.0, 3, 0.0}, {0, 0, 2, 2, 1, 7.1, -7, 0.0, 3, 0.0}, {1, 1, 0, -2, 0, -34.8, -7, 0.0, 0, 0.0}, {0, 1, 2, 0, 2, 13.2, 7, 0.0, -3, 0.0}, {-2, 0, 0, 2, 1, -199.8, -6, 0.0, 3, 0.0}, {0, 0, 0, 2, 1, 14.8, -6, 0.0, 3, 0.0}, {2, 0, 2, -2, 2, 12.8, 6, 0.0, -3, 0.0}, {1, 0, 0, 2, 0, 9.6, 6, 0.0, 0, 0.0}, {1, 0, 2, -2, 1, 23.9, 6, 0.0, -3, 0.0}, {0, 0, 0, -2, 1, -14.7, -5, 0.0, 3, 0.0}, {0, -1, 2, -2, 1, 346.6, -5, 0.0, 3, 0.0}, {2, 0, 2, 0, 1, 6.9, -5, 0.0, 3, 0.0}, {1, -1, 0, 0, 0, 29.8, 5, 0.0, 0, 0.0}, {1, 0, 0, -1, 0, 411.8, -4, 0.0, 0, 0.0}, {0, 0, 0, 1, 0, 29.5, -4, 0.0, 0, 0.0}, {0, 1, 0, -2, 0, -15.4, -4, 0.0, 0, 0.0}, {1, 0, -2, 0, 0, -26.9, 4, 0.0, 0, 0.0}, {2, 0, 0, -2, 1, 212.3, 4, 0.0, -2, 0.0}, {0, 1, 2, -2, 1, 119.6, 4, 0.0, -2, 0.0}, {1, 1, 0, 0, 0, 25.6, -3, 0.0, 0, 0.0}, {1, -1, 0, -1, 0, -3232.9, -3, 0.0, 0, 0.0}, {-1, -1, 2, 2, 2, 9.8, -3, 0.0, 1, 0.0}, {0, -1, 2, 2, 2, 7.2, -3, 0.0, 1, 0.0}, {1, -1, 2, 0, 2, 9.4, -3, 0.0, 1, 0.0}, {3, 0, 2, 0, 2, 5.5, -3, 0.0, 1, 0.0}, {-2, 0, 2, 0, 2, 1615.7, -3, 0.0, 1, 0.0}, {1, 0, 2, 0, 0, 9.1, 3, 0.0, 0, 0.0}, {-1, 0, 2, 4, 2, 5.8, -2, 0.0, 1, 0.0}, {1, 0, 0, 0, 2, 27.8, -2, 0.0, 1, 0.0}, {-1, 0, 2, -2, 1, -32.6, -2, 0.0, 1, 0.0}, {0, -2, 2, -2, 1, 6786.3, -2, 0.0, 1, 0.0}, {-2, 0, 0, 0, 1, -13.7, -2, 0.0, 1, 0.0}, {2, 0, 0, 0, 1, 13.8, 2, 0.0, -1, 0.0}, {3, 0, 0, 0, 0, 9.2, 2, 0.0, 0, 0.0}, {1, 1, 2, 0, 2, 8.9, 2, 0.0, -1, 0.0}, {0, 0, 2, 1, 2, 9.3, 2, 0.0, -1, 0.0}, {1, 0, 0, 2, 1, 9.6, -1, 0.0, 0, 0.0}, {1, 0, 2, 2, 1, 5.6, -1, 0.0, 1, 0.0}, {1, 1, 0, -2, 1, -34.7, -1, 0.0, 0, 0.0}, {0, 1, 0, 2, 0, 14.2, -1, 0.0, 0, 0.0}, {0, 1, 2, -2, 0, 117.5, -1, 0.0, 0, 0.0}, {0, 1, -2, 2, 0, -329.8, -1, 0.0, 0, 0.0}, {1, 0, -2, 2, 0, 23.8, -1, 0.0, 0, 0.0}, {1, 0, -2, -2, 0, -9.5, -1, 0.0, 0, 0.0}, {1, 0, 2, -2, 0, 32.8, -1, 0.0, 0, 0.0}, {1, 0, 0, -4, 0, -10.1, -1, 0.0, 0, 0.0}, {2, 0, 0, -4, 0, -15.9, -1, 0.0, 0, 0.0}, {0, 0, 2, 4, 2, 4.8, -1, 0.0, 0, 0.0}, {0, 0, 2, -1, 2, 25.4, -1, 0.0, 0, 0.0}, {-2, 0, 2, 4, 2, 7.3, -1, 0.0, 1, 0.0}, {2, 0, 2, 2, 2, 4.7, -1, 0.0, 0, 0.0}, {0, -1, 2, 0, 1, 14.2, -1, 0.0, 0, 0.0}, {0, 0, -2, 0, 1, -13.6, -1, 0.0, 0, 0.0}, {0, 0, 4, -2, 2, 12.7, 1, 0.0, 0, 0.0}, {0, 1, 0, 0, 2, 409.2, 1, 0.0, 0, 0.0}, {1, 1, 2, -2, 2, 22.5, 1, 0.0, -1, 0.0}, {3, 0, 2, -2, 2, 8.7, 1, 0.0, 0, 0.0}, {-2, 0, 2, 2, 2, 14.6, 1, 0.0, -1, 0.0}, {-1, 0, 0, 0, 2, -27.3, 1, 0.0, -1, 0.0}, {0, 0, -2, 2, 1, -169.0, 1, 0.0, 0, 0.0}, {0, 1, 2, 0, 1, 13.1, 1, 0.0, 0, 0.0}, {-1, 0, 4, 0, 2, 9.1, 1, 0.0, 0, 0.0}, {2, 1, 0, -2, 0, 131.7, 1, 0.0, 0, 0.0}, {2, 0, 0, 2, 0, 7.1, 1, 0.0, 0, 0.0}, {2, 0, 2, -2, 1, 12.8, 1, 0.0, -1, 0.0}, {2, 0, -2, 0, 1, -943.2, 1, 0.0, 0, 0.0}, {1, -1, 0, -2, 0, -29.3, 1, 0.0, 0, 0.0}, {-1, 0, 0, 1, 1, -388.3, 1, 0.0, 0, 0.0}, {-1, -1, 0, 2, 1, 35.0, 1, 0.0, 0, 0.0}, {0, 1, 0, 1, 0, 27.3, 1, 0.0, 0, 0.0}}; double ang; int i; int j; *dpsi = *deps = 0.0; for (i = 0; i < 106; i++) { ang = 0.0; for (j = 0; j < 5; j++) { ang += nut[i][j] * f[j]; } *dpsi += (nut[i][6] + nut[i][7] * t) * sin(ang); *deps += (nut[i][8] + nut[i][9] * t) * cos(ang); } *dpsi *= 1e-4 * AS2R; /* 0.1 mas -> rad */ *deps *= 1e-4 * AS2R; } /* eci to ecef transformation matrix ------------------------------------------- * compute eci to ecef transformation matrix * args : gtime_t tutc I time in utc * double *erpv I erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d) * double *U O eci to ecef transformation matrix (3 x 3) * double *gmst IO greenwich mean sidereal time (rad) * (NULL: no output) * return : none * note : see ref [3] chap 5 * not thread-safe *-----------------------------------------------------------------------------*/ void eci2ecef(gtime_t tutc, const double *erpv, double *U, double *gmst) { const double ep2000[] = {2000, 1, 1, 12, 0, 0}; static gtime_t tutc_; static double U_[9]; static double gmst_; gtime_t tgps; double eps; double ze; double th; double z; double t; double t2; double t3; double dpsi; double deps; double gast; double f[5]; double R1[9]; double R2[9]; double R3[9]; double R[9]; double W[9]; double N[9]; double P[9]; double NP[9]; int i; trace(4, "eci2ecef: tutc=%s\n", time_str(tutc, 3)); if (fabs(timediff(tutc, tutc_)) < 0.01) { /* read cache */ for (i = 0; i < 9; i++) { U[i] = U_[i]; } if (gmst) { *gmst = gmst_; } return; } tutc_ = tutc; /* terrestrial time */ tgps = utc2gpst(tutc_); t = (timediff(tgps, epoch2time(ep2000)) + 19.0 + 32.184) / 86400.0 / 36525.0; t2 = t * t; t3 = t2 * t; /* astronomical arguments */ ast_args(t, f); /* iau 1976 precession */ ze = (2306.2181 * t + 0.30188 * t2 + 0.017998 * t3) * AS2R; th = (2004.3109 * t - 0.42665 * t2 - 0.041833 * t3) * AS2R; z = (2306.2181 * t + 1.09468 * t2 + 0.018203 * t3) * AS2R; eps = (84381.448 - 46.8150 * t - 0.00059 * t2 + 0.001813 * t3) * AS2R; Rz(-z, R1); Ry(th, R2); Rz(-ze, R3); matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R); matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, P); /* P=Rz(-z)*Ry(th)*Rz(-ze) */ /* iau 1980 nutation */ nut_iau1980(t, f, &dpsi, &deps); Rx(-eps - deps, R1); Rz(-dpsi, R2); Rx(eps, R3); matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R); matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */ /* greenwich apparent sidereal time (rad) */ gmst_ = utc2gmst(tutc_, erpv[2]); gast = gmst_ + dpsi * cos(eps); gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R; /* eci to ecef transformation matrix */ Ry(-erpv[0], R1); Rx(-erpv[1], R2); Rz(gast, R3); matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, W); matmul("NN", 3, 3, 3, 1.0, W, R3, 0.0, R); /* W=Ry(-xp)*Rx(-yp) */ matmul("NN", 3, 3, 3, 1.0, N, P, 0.0, NP); matmul("NN", 3, 3, 3, 1.0, R, NP, 0.0, U_); /* U=W*Rz(gast)*N*P */ for (i = 0; i < 9; i++) { U[i] = U_[i]; } if (gmst) { *gmst = gmst_; } trace(5, "gmst=%.12f gast=%.12f\n", gmst_, gast); trace(5, "P=\n"); tracemat(5, P, 3, 3, 15, 12); trace(5, "N=\n"); tracemat(5, N, 3, 3, 15, 12); trace(5, "W=\n"); tracemat(5, W, 3, 3, 15, 12); trace(5, "U=\n"); tracemat(5, U, 3, 3, 15, 12); } /* decode antenna parameter field --------------------------------------------*/ int decodef(char *p, int n, double *v) { int i; for (i = 0; i < n; i++) { v[i] = 0.0; } for (i = 0, p = strtok(p, " "); p && i < n; p = strtok(nullptr, " ")) { v[i++] = atof(p) * 1e-3; } return i; } /* add antenna parameter -----------------------------------------------------*/ void addpcv(const pcv_t *pcv, pcvs_t *pcvs) { pcv_t *pcvs_pcv; if (pcvs->nmax <= pcvs->n) { pcvs->nmax += 256; if (!(pcvs_pcv = static_cast(realloc(pcvs->pcv, sizeof(pcv_t) * pcvs->nmax)))) { trace(1, "addpcv: memory allocation error\n"); free(pcvs->pcv); pcvs->pcv = nullptr; pcvs->n = pcvs->nmax = 0; return; } pcvs->pcv = pcvs_pcv; } pcvs->pcv[pcvs->n++] = *pcv; } /* read ngs antenna parameter file -------------------------------------------*/ int readngspcv(const char *file, pcvs_t *pcvs) { FILE *fp; static const pcv_t pcv0 = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}}; pcv_t pcv = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}}; double neu[3]; int n = 0; char buff[256]; if (!(fp = fopen(file, "re"))) { trace(2, "ngs pcv file open error: %s\n", file); return 0; } while (fgets(buff, sizeof(buff), fp)) { if (strlen(buff) >= 62 && buff[61] == '|') { continue; } if (buff[0] != ' ') { n = 0; /* start line */ } if (++n == 1) { pcv = pcv0; strncpy(pcv.type, buff, 61); pcv.type[61] = '\0'; } else if (n == 2) { if (decodef(buff, 3, neu) < 3) { continue; } pcv.off[0][0] = neu[1]; pcv.off[0][1] = neu[0]; pcv.off[0][2] = neu[2]; } else if (n == 3) { decodef(buff, 10, pcv.var[0]); } else if (n == 4) { decodef(buff, 9, pcv.var[0] + 10); } else if (n == 5) { if (decodef(buff, 3, neu) < 3) { continue; }; pcv.off[1][0] = neu[1]; pcv.off[1][1] = neu[0]; pcv.off[1][2] = neu[2]; } else if (n == 6) { decodef(buff, 10, pcv.var[1]); } else if (n == 7) { decodef(buff, 9, pcv.var[1] + 10); addpcv(&pcv, pcvs); } } fclose(fp); return 1; } /* read antex file ----------------------------------------------------------*/ int readantex(const char *file, pcvs_t *pcvs) { FILE *fp; static const pcv_t pcv0 = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}}; pcv_t pcv = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}}; double neu[3]; int i; int f; int freq = 0; int state = 0; int freqs[] = {1, 2, 5, 6, 7, 8, 0}; char buff[256]; trace(3, "readantex: file=%s\n", file); if (!(fp = fopen(file, "re"))) { trace(2, "antex pcv file open error: %s\n", file); return 0; } while (fgets(buff, sizeof(buff), fp)) { if (strlen(buff) < 60 || strstr(buff + 60, "COMMENT")) { continue; } if (strstr(buff + 60, "START OF ANTENNA")) { pcv = pcv0; state = 1; } if (strstr(buff + 60, "END OF ANTENNA")) { addpcv(&pcv, pcvs); state = 0; } if (!state) { continue; } if (strstr(buff + 60, "TYPE / SERIAL NO")) { strncpy(pcv.type, buff, 20); pcv.type[20] = '\0'; strncpy(pcv.code, buff + 20, 20); pcv.code[20] = '\0'; if (!strncmp(pcv.code + 3, " ", 8)) { pcv.sat = satid2no(pcv.code); } } else if (strstr(buff + 60, "VALID FROM")) { if (!str2time(buff, 0, 43, &pcv.ts)) { continue; } } else if (strstr(buff + 60, "VALID UNTIL")) { if (!str2time(buff, 0, 43, &pcv.te)) { continue; } } else if (strstr(buff + 60, "START OF FREQUENCY")) { if (sscanf(buff + 4, "%d", &f) < 1) { continue; } for (i = 0; i < NFREQ; i++) { if (freqs[i] == f) { break; } } if (i < NFREQ) { freq = i + 1; } } else if (strstr(buff + 60, "END OF FREQUENCY")) { freq = 0; } else if (strstr(buff + 60, "NORTH / EAST / UP")) { if (freq < 1 || NFREQ < freq) { continue; } if (decodef(buff, 3, neu) < 3) { continue; } pcv.off[freq - 1][0] = neu[pcv.sat ? 0 : 1]; /* x or e */ pcv.off[freq - 1][1] = neu[pcv.sat ? 1 : 0]; /* y or n */ pcv.off[freq - 1][2] = neu[2]; /* z or u */ } else if (strstr(buff, "NOAZI")) { if (freq < 1 || NFREQ < freq) { continue; } if ((i = decodef(buff + 8, 19, pcv.var[freq - 1])) <= 0) { continue; } for (; i < 19; i++) { pcv.var[freq - 1][i] = pcv.var[freq - 1][i - 1]; } } } fclose(fp); return 1; } /* read antenna parameters ------------------------------------------------------ * read antenna parameters * args : char *file I antenna parameter file (antex) * pcvs_t *pcvs IO antenna parameters * return : status (1:ok,0:file open error) * notes : file with the externsion .atx or .ATX is recognized as antex * file except for antex is recognized ngs antenna parameters * see reference [3] * only support non-azimuth-depedent parameters *-----------------------------------------------------------------------------*/ int readpcv(const char *file, pcvs_t *pcvs) { pcv_t *pcv; const char *ext; int i; int stat; trace(3, "readpcv: file=%s\n", file); if (!(ext = strrchr(file, '.'))) { ext = ""; } if (!strcmp(ext, ".atx") || !strcmp(ext, ".ATX")) { stat = readantex(file, pcvs); } else { stat = readngspcv(file, pcvs); } for (i = 0; i < pcvs->n; i++) { pcv = pcvs->pcv + i; trace(4, "sat=%2d type=%20s code=%s off=%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n", pcv->sat, pcv->type, pcv->code, pcv->off[0][0], pcv->off[0][1], pcv->off[0][2], pcv->off[1][0], pcv->off[1][1], pcv->off[1][2]); } return stat; } /* search antenna parameter ---------------------------------------------------- * read satellite antenna phase center position * args : int sat I satellite number (0: receiver antenna) * char *type I antenna type for receiver antenna * gtime_t time I time to search parameters * pcvs_t *pcvs IO antenna parameters * return : antenna parameter (NULL: no antenna) *-----------------------------------------------------------------------------*/ pcv_t *searchpcv(int sat, const char *type, gtime_t time, const pcvs_t *pcvs) { pcv_t *pcv; char buff[MAXANT] = ""; char *types[2]; char *p; int i; int j; int n = 0; trace(3, "searchpcv: sat=%2d type=%s\n", sat, type); if (sat) { /* search satellite antenna */ for (i = 0; i < pcvs->n; i++) { pcv = pcvs->pcv + i; if (pcv->sat != sat) { continue; } if (pcv->ts.time != 0 && timediff(pcv->ts, time) > 0.0) { continue; } if (pcv->te.time != 0 && timediff(pcv->te, time) < 0.0) { continue; } return pcv; } } else { if (strlen(type) < MAXANT + 1) { std::strncpy(buff, type, MAXANT); buff[MAXANT - 1] = '\0'; } else { trace(1, "type array is too long"); } for (p = strtok(buff, " "); p && n < 2; p = strtok(nullptr, " ")) { types[n++] = p; } if (n <= 0) { return nullptr; } /* search receiver antenna with radome at first */ for (i = 0; i < pcvs->n; i++) { pcv = pcvs->pcv + i; for (j = 0; j < n; j++) { if (!strstr(pcv->type, types[j])) { break; } } if (j >= n) { return pcv; } } /* search receiver antenna without radome */ for (i = 0; i < pcvs->n; i++) { pcv = pcvs->pcv + i; if (strstr(pcv->type, types[0]) != pcv->type) { continue; } trace(2, "pcv without radome is used type=%s\n", type); return pcv; } } return nullptr; } /* read station positions ------------------------------------------------------ * read positions from station position file * args : char *file I station position file containing * lat(deg) lon(deg) height(m) name in a line * char *rcvs I station name * double *pos O station position {lat,lon,h} (rad/m) * (all 0 if search error) * return : none *-----------------------------------------------------------------------------*/ void readpos(const char *file, const char *rcv, double *pos) { static double poss[2048][3]; static char stas[2048][16]; FILE *fp; int i; int j; int len; int np = 0; char buff[256]; char str[256]; trace(3, "readpos: file=%s\n", file); if (!(fp = fopen(file, "re"))) { fprintf(stderr, "reference position file open error : %s\n", file); return; } while (np < 2048 && fgets(buff, sizeof(buff), fp)) { if (buff[0] == '%' || buff[0] == '#') { continue; } if (sscanf(buff, "%lf %lf %lf %s", &poss[np][0], &poss[np][1], &poss[np][2], str) < 4) { continue; } // strncpy(stas[np], str, 15); This line triggers a warning. Replaced by: memcpy(stas[np], str, 15 * sizeof(stas[np][0])); stas[np++][15] = '\0'; } fclose(fp); len = static_cast(strlen(rcv)); for (i = 0; i < np; i++) { if (strncmp(stas[i], rcv, len) != 0) { continue; } for (j = 0; j < 3; j++) { pos[j] = poss[i][j]; } pos[0] *= D2R; pos[1] *= D2R; return; } pos[0] = pos[1] = pos[2] = 0.0; } /* read blq record -----------------------------------------------------------*/ int readblqrecord(FILE *fp, double *odisp) { double v[11]; char buff[256]; int i; int n = 0; while (fgets(buff, sizeof(buff), fp)) { if (!strncmp(buff, "$$", 2)) { continue; } if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf", v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10) < 11) { continue; } for (i = 0; i < 11; i++) { odisp[n + i * 6] = v[i]; } if (++n == 6) { return 1; } } return 0; } /* read blq ocean tide loading parameters -------------------------------------- * read blq ocean tide loading parameters * args : char *file I BLQ ocean tide loading parameter file * char *sta I station name * double *odisp O ocean tide loading parameters * return : status (1:ok, 0:file open error) *-----------------------------------------------------------------------------*/ int readblq(const char *file, const char *sta, double *odisp) { FILE *fp; char buff[256]; char staname[32] = ""; char name[32]; char *p; /* station name to upper case */ sscanf(sta, "%16s", staname); for (p = staname; (*p = static_cast(toupper(static_cast(*p)))); p++) { } if (!(fp = fopen(file, "re"))) { trace(2, "blq file open error: file=%s\n", file); return 0; } while (fgets(buff, sizeof(buff), fp)) { if (!strncmp(buff, "$$", 2) || strlen(buff) < 2) { continue; } if (sscanf(buff + 2, "%16s", name) < 1) { continue; } for (p = name; (*p = static_cast(toupper(static_cast(*p)))); p++) { } if (strcmp(name, staname) != 0) { continue; } /* read blq record */ if (readblqrecord(fp, odisp)) { fclose(fp); return 1; } } fclose(fp); trace(2, "no otl parameters: sta=%s file=%s\n", sta, file); return 0; } /* read earth rotation parameters ---------------------------------------------- * read earth rotation parameters * args : char *file I IGS ERP file (IGS ERP ver.2) * erp_t *erp O earth rotation parameters * return : status (1:ok,0:file open error) *-----------------------------------------------------------------------------*/ int readerp(const char *file, erp_t *erp) { FILE *fp; erpd_t *erp_data; double v[14] = {}; char buff[256]; trace(3, "readerp: file=%s\n", file); if (!(fp = fopen(file, "re"))) { trace(2, "erp file open error: file=%s\n", file); return 0; } while (fgets(buff, sizeof(buff), fp)) { if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf", v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10, v + 11, v + 12, v + 13) < 5) { continue; } if (erp->n >= erp->nmax) { erp->nmax = erp->nmax <= 0 ? 128 : erp->nmax * 2; erp_data = static_cast(realloc(erp->data, sizeof(erpd_t) * erp->nmax)); if (!erp_data) { free(erp->data); erp->data = nullptr; erp->n = erp->nmax = 0; fclose(fp); return 0; } erp->data = erp_data; } erp->data[erp->n].mjd = v[0]; erp->data[erp->n].xp = v[1] * 1e-6 * AS2R; erp->data[erp->n].yp = v[2] * 1e-6 * AS2R; erp->data[erp->n].ut1_utc = v[3] * 1e-7; erp->data[erp->n].lod = v[4] * 1e-7; erp->data[erp->n].xpr = v[12] * 1e-6 * AS2R; erp->data[erp->n++].ypr = v[13] * 1e-6 * AS2R; } fclose(fp); return 1; } /* get earth rotation parameter values ----------------------------------------- * get earth rotation parameter values * args : erp_t *erp I earth rotation parameters * gtime_t time I time (gpst) * double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d) * return : status (1:ok,0:error) *-----------------------------------------------------------------------------*/ int geterp(const erp_t *erp, gtime_t time, double *erpv) { const double ep[] = {2000, 1, 1, 12, 0, 0}; double mjd; double day; double a; int i; int j; int k; trace(4, "geterp:\n"); if (erp->n <= 0) { return 0; } mjd = 51544.5 + (timediff(gpst2utc(time), epoch2time(ep))) / 86400.0; if (mjd <= erp->data[0].mjd) { day = mjd - erp->data[0].mjd; erpv[0] = erp->data[0].xp + erp->data[0].xpr * day; erpv[1] = erp->data[0].yp + erp->data[0].ypr * day; erpv[2] = erp->data[0].ut1_utc - erp->data[0].lod * day; erpv[3] = erp->data[0].lod; return 1; } if (mjd >= erp->data[erp->n - 1].mjd) { day = mjd - erp->data[erp->n - 1].mjd; erpv[0] = erp->data[erp->n - 1].xp + erp->data[erp->n - 1].xpr * day; erpv[1] = erp->data[erp->n - 1].yp + erp->data[erp->n - 1].ypr * day; erpv[2] = erp->data[erp->n - 1].ut1_utc - erp->data[erp->n - 1].lod * day; erpv[3] = erp->data[erp->n - 1].lod; return 1; } for (j = 0, k = erp->n - 1; j < k - 1;) { i = (j + k) / 2; if (mjd < erp->data[i].mjd) { k = i; } else { j = i; } } if (erp->data[j].mjd == erp->data[j + 1].mjd) { a = 0.5; } else { a = (mjd - erp->data[j].mjd) / (erp->data[j + 1].mjd - erp->data[j].mjd); } erpv[0] = (1.0 - a) * erp->data[j].xp + a * erp->data[j + 1].xp; erpv[1] = (1.0 - a) * erp->data[j].yp + a * erp->data[j + 1].yp; erpv[2] = (1.0 - a) * erp->data[j].ut1_utc + a * erp->data[j + 1].ut1_utc; erpv[3] = (1.0 - a) * erp->data[j].lod + a * erp->data[j + 1].lod; return 1; } /* compare ephemeris ---------------------------------------------------------*/ int cmpeph(const void *p1, const void *p2) { const auto *q1 = static_cast(p1); const auto *q2 = static_cast(p2); return q1->ttr.time != q2->ttr.time ? static_cast(q1->ttr.time - q2->ttr.time) : (q1->toe.time != q2->toe.time ? static_cast(q1->toe.time - q2->toe.time) : q1->sat - q2->sat); } /* sort and unique ephemeris -------------------------------------------------*/ void uniqeph(nav_t *nav) { eph_t *nav_eph; int i; int j; trace(3, "uniqeph: n=%d\n", nav->n); if (nav->n <= 0) { return; } qsort(nav->eph, nav->n, sizeof(eph_t), cmpeph); for (i = 1, j = 0; i < nav->n; i++) { if (nav->eph[i].sat != nav->eph[j].sat || nav->eph[i].iode != nav->eph[j].iode) { nav->eph[++j] = nav->eph[i]; } } nav->n = j + 1; if (!(nav_eph = static_cast(realloc(nav->eph, sizeof(eph_t) * nav->n)))) { trace(1, "uniqeph malloc error n=%d\n", nav->n); free(nav->eph); nav->eph = nullptr; nav->n = nav->nmax = 0; return; } nav->eph = nav_eph; nav->nmax = nav->n; trace(4, "uniqeph: n=%d\n", nav->n); } /* compare glonass ephemeris -------------------------------------------------*/ int cmpgeph(const void *p1, const void *p2) { const auto *q1 = static_cast(p1); const auto *q2 = static_cast(p2); return q1->tof.time != q2->tof.time ? static_cast(q1->tof.time - q2->tof.time) : (q1->toe.time != q2->toe.time ? static_cast(q1->toe.time - q2->toe.time) : q1->sat - q2->sat); } /* sort and unique glonass ephemeris -----------------------------------------*/ void uniqgeph(nav_t *nav) { geph_t *nav_geph; int i; int j; trace(3, "uniqgeph: ng=%d\n", nav->ng); if (nav->ng <= 0) { return; } qsort(nav->geph, nav->ng, sizeof(geph_t), cmpgeph); for (i = j = 0; i < nav->ng; i++) { if (nav->geph[i].sat != nav->geph[j].sat || nav->geph[i].toe.time != nav->geph[j].toe.time || nav->geph[i].svh != nav->geph[j].svh) { nav->geph[++j] = nav->geph[i]; } } nav->ng = j + 1; if (!(nav_geph = static_cast(realloc(nav->geph, sizeof(geph_t) * nav->ng)))) { trace(1, "uniqgeph malloc error ng=%d\n", nav->ng); free(nav->geph); nav->geph = nullptr; nav->ng = nav->ngmax = 0; return; } nav->geph = nav_geph; nav->ngmax = nav->ng; trace(4, "uniqgeph: ng=%d\n", nav->ng); } /* compare sbas ephemeris ----------------------------------------------------*/ int cmpseph(const void *p1, const void *p2) { const auto *q1 = static_cast(p1); const auto *q2 = static_cast(p2); return q1->tof.time != q2->tof.time ? static_cast(q1->tof.time - q2->tof.time) : (q1->t0.time != q2->t0.time ? static_cast(q1->t0.time - q2->t0.time) : q1->sat - q2->sat); } /* sort and unique sbas ephemeris --------------------------------------------*/ void uniqseph(nav_t *nav) { seph_t *nav_seph; int i; int j; trace(3, "uniqseph: ns=%d\n", nav->ns); if (nav->ns <= 0) { return; } qsort(nav->seph, nav->ns, sizeof(seph_t), cmpseph); for (i = j = 0; i < nav->ns; i++) { if (nav->seph[i].sat != nav->seph[j].sat || nav->seph[i].t0.time != nav->seph[j].t0.time) { nav->seph[++j] = nav->seph[i]; } } nav->ns = j + 1; if (!(nav_seph = static_cast(realloc(nav->seph, sizeof(seph_t) * nav->ns)))) { trace(1, "uniqseph malloc error ns=%d\n", nav->ns); free(nav->seph); nav->seph = nullptr; nav->ns = nav->nsmax = 0; return; } nav->seph = nav_seph; nav->nsmax = nav->ns; trace(4, "uniqseph: ns=%d\n", nav->ns); } /* unique ephemerides ---------------------------------------------------------- * unique ephemerides in navigation data and update carrier wave length * args : nav_t *nav IO navigation data * return : number of epochs *-----------------------------------------------------------------------------*/ void uniqnav(nav_t *nav) { int i; int j; trace(3, "uniqnav: neph=%d ngeph=%d nseph=%d\n", nav->n, nav->ng, nav->ns); /* unique ephemeris */ uniqeph(nav); uniqgeph(nav); uniqseph(nav); /* update carrier wave length */ for (i = 0; i < MAXSAT; i++) { for (j = 0; j < NFREQ; j++) { nav->lam[i][j] = satwavelen(i + 1, j, nav); } } } /* compare observation data -------------------------------------------------*/ int cmpobs(const void *p1, const void *p2) { const auto *q1 = static_cast(p1); const auto *q2 = static_cast(p2); double tt = timediff(q1->time, q2->time); if (fabs(tt) > DTTOL) { return tt < 0 ? -1 : 1; } if (q1->rcv != q2->rcv) { return static_cast(q1->rcv) - static_cast(q2->rcv); } return static_cast(q1->sat) - static_cast(q2->sat); } /* sort and unique observation data -------------------------------------------- * sort and unique observation data by time, rcv, sat * args : obs_t *obs IO observation data * return : number of epochs *-----------------------------------------------------------------------------*/ int sortobs(obs_t *obs) { int i; int j; int n; trace(3, "sortobs: nobs=%d\n", obs->n); if (obs->n <= 0) { return 0; } qsort(obs->data, obs->n, sizeof(obsd_t), cmpobs); /* delete duplicated data */ for (i = j = 0; i < obs->n; i++) { if (obs->data[i].sat != obs->data[j].sat || obs->data[i].rcv != obs->data[j].rcv || timediff(obs->data[i].time, obs->data[j].time) != 0.0) { obs->data[++j] = obs->data[i]; } } obs->n = j + 1; for (i = n = 0; i < obs->n; i = j, n++) { for (j = i + 1; j < obs->n; j++) { if (timediff(obs->data[j].time, obs->data[i].time) > DTTOL) { break; } } } return n; } /* screen by time -------------------------------------------------------------- * screening by time start, time end, and time interval * args : gtime_t time I time * gtime_t ts I time start (ts.time==0:no screening by ts) * gtime_t te I time end (te.time==0:no screening by te) * double tint I time interval (s) (0.0:no screen by tint) * return : 1:on condition, 0:not on condition *-----------------------------------------------------------------------------*/ int screent(gtime_t time, gtime_t ts, gtime_t te, double tint) { return (tint <= 0.0 || fmod(time2gpst(time, nullptr) + DTTOL, tint) <= DTTOL * 2.0) && (ts.time == 0 || timediff(time, ts) >= -DTTOL) && (te.time == 0 || timediff(time, te) < DTTOL); } /* read/save navigation data --------------------------------------------------- * save or load navigation data * args : char file I file path * nav_t nav O/I navigation data * return : status (1:ok,0:no file) *-----------------------------------------------------------------------------*/ int readnav(const char *file, nav_t *nav) { FILE *fp; eph_t eph0 = {0, 0, 0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, {}, 0.0, 0.0}; geph_t geph0 = {0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {}, {}, {}, 0.0, 0.0, 0.0}; char buff[4096]; char *p; int32_t toe_time; int32_t tof_time; int32_t toc_time; int32_t ttr_time; int i; int sat; int prn; trace(3, "loadnav: file=%s\n", file); if (!(fp = fopen(file, "re"))) { return 0; } while (fgets(buff, sizeof(buff), fp)) { if (!strncmp(buff, "IONUTC", 6)) { for (i = 0; i < 8; i++) { nav->ion_gps[i] = 0.0; } for (i = 0; i < 4; i++) { nav->utc_gps[i] = 0.0; } nav->leaps = 0; sscanf(buff, "IONUTC,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d", &nav->ion_gps[0], &nav->ion_gps[1], &nav->ion_gps[2], &nav->ion_gps[3], &nav->ion_gps[4], &nav->ion_gps[5], &nav->ion_gps[6], &nav->ion_gps[7], &nav->utc_gps[0], &nav->utc_gps[1], &nav->utc_gps[2], &nav->utc_gps[3], &nav->leaps); continue; } if ((p = strchr(buff, ','))) { *p = '\0'; } else { continue; } if (!(sat = satid2no(buff))) { continue; } if (satsys(sat, &prn) == SYS_GLO) { nav->geph[prn - 1] = geph0; nav->geph[prn - 1].sat = sat; toe_time = tof_time = 0; sscanf(p + 1, "%d,%d,%d,%d,%d,%d,%d,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf," "%lf,%lf,%lf,%lf", &nav->geph[prn - 1].iode, &nav->geph[prn - 1].frq, &nav->geph[prn - 1].svh, &nav->geph[prn - 1].sva, &nav->geph[prn - 1].age, &toe_time, &tof_time, &nav->geph[prn - 1].pos[0], &nav->geph[prn - 1].pos[1], &nav->geph[prn - 1].pos[2], &nav->geph[prn - 1].vel[0], &nav->geph[prn - 1].vel[1], &nav->geph[prn - 1].vel[2], &nav->geph[prn - 1].acc[0], &nav->geph[prn - 1].acc[1], &nav->geph[prn - 1].acc[2], &nav->geph[prn - 1].taun, &nav->geph[prn - 1].gamn, &nav->geph[prn - 1].dtaun); nav->geph[prn - 1].toe.time = toe_time; nav->geph[prn - 1].tof.time = tof_time; } else { nav->eph[sat - 1] = eph0; nav->eph[sat - 1].sat = sat; toe_time = toc_time = ttr_time = 0; sscanf(p + 1, "%d,%d,%d,%d,%d,%d,%d,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf," "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d,%d", &nav->eph[sat - 1].iode, &nav->eph[sat - 1].iodc, &nav->eph[sat - 1].sva, &nav->eph[sat - 1].svh, &toe_time, &toc_time, &ttr_time, &nav->eph[sat - 1].A, &nav->eph[sat - 1].e, &nav->eph[sat - 1].i0, &nav->eph[sat - 1].OMG0, &nav->eph[sat - 1].omg, &nav->eph[sat - 1].M0, &nav->eph[sat - 1].deln, &nav->eph[sat - 1].OMGd, &nav->eph[sat - 1].idot, &nav->eph[sat - 1].crc, &nav->eph[sat - 1].crs, &nav->eph[sat - 1].cuc, &nav->eph[sat - 1].cus, &nav->eph[sat - 1].cic, &nav->eph[sat - 1].cis, &nav->eph[sat - 1].toes, &nav->eph[sat - 1].fit, &nav->eph[sat - 1].f0, &nav->eph[sat - 1].f1, &nav->eph[sat - 1].f2, &nav->eph[sat - 1].tgd[0], &nav->eph[sat - 1].code, &nav->eph[sat - 1].flag); nav->eph[sat - 1].toe.time = toe_time; nav->eph[sat - 1].toc.time = toc_time; nav->eph[sat - 1].ttr.time = ttr_time; } } fclose(fp); return 1; } int savenav(const char *file, const nav_t *nav) { FILE *fp; int i; char id[32]; trace(3, "savenav: file=%s\n", file); if (!(fp = fopen(file, "we"))) { return 0; } for (i = 0; i < MAXSAT; i++) { if (nav->eph[i].ttr.time == 0) { continue; } satno2id(nav->eph[i].sat, id); fprintf(fp, "%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E," "%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E," "%.14E,%.14E,%.14E,%.14E,%.14E,%d,%d\n", id, nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].sva, nav->eph[i].svh, static_cast(nav->eph[i].toe.time), static_cast(nav->eph[i].toc.time), static_cast(nav->eph[i].ttr.time), nav->eph[i].A, nav->eph[i].e, nav->eph[i].i0, nav->eph[i].OMG0, nav->eph[i].omg, nav->eph[i].M0, nav->eph[i].deln, nav->eph[i].OMGd, nav->eph[i].idot, nav->eph[i].crc, nav->eph[i].crs, nav->eph[i].cuc, nav->eph[i].cus, nav->eph[i].cic, nav->eph[i].cis, nav->eph[i].toes, nav->eph[i].fit, nav->eph[i].f0, nav->eph[i].f1, nav->eph[i].f2, nav->eph[i].tgd[0], nav->eph[i].code, nav->eph[i].flag); } for (i = 0; i < MAXPRNGLO; i++) { if (nav->geph[i].tof.time == 0) { continue; } satno2id(nav->geph[i].sat, id); fprintf(fp, "%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E," "%.14E,%.14E,%.14E,%.14E,%.14E,%.14E\n", id, nav->geph[i].iode, nav->geph[i].frq, nav->geph[i].svh, nav->geph[i].sva, nav->geph[i].age, static_cast(nav->geph[i].toe.time), static_cast(nav->geph[i].tof.time), nav->geph[i].pos[0], nav->geph[i].pos[1], nav->geph[i].pos[2], nav->geph[i].vel[0], nav->geph[i].vel[1], nav->geph[i].vel[2], nav->geph[i].acc[0], nav->geph[i].acc[1], nav->geph[i].acc[2], nav->geph[i].taun, nav->geph[i].gamn, nav->geph[i].dtaun); } fprintf(fp, "IONUTC,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E," "%.14E,%.14E,%.14E,%d", nav->ion_gps[0], nav->ion_gps[1], nav->ion_gps[2], nav->ion_gps[3], nav->ion_gps[4], nav->ion_gps[5], nav->ion_gps[6], nav->ion_gps[7], nav->utc_gps[0], nav->utc_gps[1], nav->utc_gps[2], nav->utc_gps[3], nav->leaps); fclose(fp); return 1; } /* free observation data ------------------------------------------------------- * free memory for observation data * args : obs_t *obs IO observation data * return : none *-----------------------------------------------------------------------------*/ void freeobs(obs_t *obs) { free(obs->data); obs->data = nullptr; obs->n = obs->nmax = 0; } /* free navigation data --------------------------------------------------------- * free memory for navigation data * args : nav_t *nav IO navigation data * int opt I option (one of the following) * (0x01: gps/qzs ephmeris, 0x02: glonass ephemeris, * 0x04: sbas ephemeris, 0x08: precise ephemeris, * 0x10: precise clock 0x20: almanac, * 0x40: tec data) * return : none *-----------------------------------------------------------------------------*/ void freenav(nav_t *nav, int opt) { if (opt & 0x01) { free(nav->eph); nav->eph = nullptr; nav->n = nav->nmax = 0; } if (opt & 0x02) { free(nav->geph); nav->geph = nullptr; nav->ng = nav->ngmax = 0; } if (opt & 0x04) { free(nav->seph); nav->seph = nullptr; nav->ns = nav->nsmax = 0; } if (opt & 0x08) { free(nav->peph); nav->peph = nullptr; nav->ne = nav->nemax = 0; } if (opt & 0x10) { free(nav->pclk); nav->pclk = nullptr; nav->nc = nav->ncmax = 0; } if (opt & 0x20) { free(nav->alm); nav->alm = nullptr; nav->na = nav->namax = 0; } if (opt & 0x40) { free(nav->tec); nav->tec = nullptr; nav->nt = nav->ntmax = 0; } if (opt & 0x80) { free(nav->fcb); nav->fcb = nullptr; nav->nf = nav->nfmax = 0; } } /* debug trace functions -----------------------------------------------------*/ // #ifdef TRACE // FILE *fp_trace = nullptr; /* file pointer of trace */ char file_trace[1024]; /* trace file */ static int level_trace = 0; /* level of trace */ unsigned int tick_trace = 0; /* tick time at traceopen (ms) */ gtime_t time_trace = {0, 0.0}; /* time at traceopen */ pthread_mutex_t lock_trace; /* lock for trace */ void traceswap() { gtime_t time = utc2gpst(timeget()); char path[1024]; rtk_lock(&lock_trace); if (static_cast(time2gpst(time, nullptr) / INT_SWAP_TRAC) == static_cast(time2gpst(time_trace, nullptr) / INT_SWAP_TRAC)) { rtk_unlock(&lock_trace); return; } time_trace = time; if (!reppath(file_trace, path, time, "", "")) { rtk_unlock(&lock_trace); return; } if (fp_trace) { fclose(fp_trace); } if (!(fp_trace = fopen(path, "we"))) { fp_trace = stderr; } rtk_unlock(&lock_trace); } void traceopen(const char *file) { gtime_t time = utc2gpst(timeget()); char path[1024]; reppath(file, path, time, "", ""); if (!*path || !(fp_trace = fopen(path, "we"))) { fp_trace = stderr; } if (strlen(file) < 1025) { std::strncpy(file_trace, file, 1024); file_trace[1023] = '\0'; } else { trace(1, "file array is too long"); } tick_trace = tickget(); time_trace = time; initlock(&lock_trace); } void traceclose() { if (fp_trace && fp_trace != stderr) { fclose(fp_trace); } fp_trace = nullptr; file_trace[0] = '\0'; } void tracelevel(int level) { level_trace = level; } // extern void trace(int level, const char *format, ...) // { // va_list ap; // // /* print error message to stderr */ // if (level <= 1) { // va_start(ap,format); vfprintf(stderr,format,ap); va_end(ap); // } // if (!fp_trace||level>level_trace) return; // traceswap(); // fprintf(fp_trace,"%d ",level); // va_start(ap,format); vfprintf(fp_trace,format,ap); va_end(ap); // fflush(fp_trace); // } void tracet(int level, const char *format, ...) { va_list ap; if (!fp_trace || level > level_trace) { return; } traceswap(); fprintf(fp_trace, "%d %9.3f: ", level, (tickget() - tick_trace) / 1000.0); va_start(ap, format); vfprintf(fp_trace, format, ap); va_end(ap); fflush(fp_trace); } void tracemat(int level, const double *A, int n, int m, int p, int q) { std::string buffer_; matsprint(A, n, m, p, q, buffer_); VLOG(level) << buffer_; } void traceobs(int level __attribute__((unused)), const obsd_t *obs __attribute__((unused)), int n __attribute__((unused))) { // char str[64],id[16]; // int i; // // if (!fp_trace||level>level_trace) return; // for (i=0;ilevel_trace) return; // for (i=0;in;i++) { // time2str(nav->eph[i].toe,s1,0); // time2str(nav->eph[i].ttr,s2,0); // satno2id(nav->eph[i].sat,id); // fprintf(fp_trace,"(%3d) %-3s : %s %s %3d %3d %02x\n",i+1, // id,s1,s2,nav->eph[i].iode,nav->eph[i].iodc,nav->eph[i].svh); // } // fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gps[0], // nav->ion_gps[1],nav->ion_gps[2],nav->ion_gps[3]); // fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gps[4], // nav->ion_gps[5],nav->ion_gps[6],nav->ion_gps[7]); // fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gal[0], // nav->ion_gal[1],nav->ion_gal[2],nav->ion_gal[3]); // } // extern void tracegnav(int level, const nav_t *nav) // { // char s1[64],s2[64],id[16]; // int i; // // if (!fp_trace||level>level_trace) return; // for (i=0;ing;i++) { // time2str(nav->geph[i].toe,s1,0); // time2str(nav->geph[i].tof,s2,0); // satno2id(nav->geph[i].sat,id); // fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d %8.3f\n",i+1, // id,s1,s2,nav->geph[i].frq,nav->geph[i].svh,nav->geph[i].taun*1e6); // } // } // extern void tracehnav(int level, const nav_t *nav) // { // char s1[64],s2[64],id[16]; // int i; // // if (!fp_trace||level>level_trace) return; // for (i=0;ins;i++) { // time2str(nav->seph[i].t0,s1,0); // time2str(nav->seph[i].tof,s2,0); // satno2id(nav->seph[i].sat,id); // fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d\n",i+1, // id,s1,s2,nav->seph[i].svh,nav->seph[i].sva); // } // } // extern void tracepeph(int level, const nav_t *nav) // { // char s[64],id[16]; // int i,j; // // if (!fp_trace||level>level_trace) return; // // for (i=0;ine;i++) { // time2str(nav->peph[i].time,s,0); // for (j=0;jpeph[i].index,id, // nav->peph[i].pos[j][0],nav->peph[i].pos[j][1], // nav->peph[i].pos[j][2],nav->peph[i].pos[j][3]*1e9, // nav->peph[i].std[j][0],nav->peph[i].std[j][1], // nav->peph[i].std[j][2],nav->peph[i].std[j][3]*1e9); // } // } // } // extern void tracepclk(int level, const nav_t *nav) // { // char s[64],id[16]; // int i,j; // // if (!fp_trace||level>level_trace) return; // // for (i=0;inc;i++) { // time2str(nav->pclk[i].time,s,0); // for (j=0;jpclk[i].index,id, // nav->pclk[i].clk[j][0]*1e9,nav->pclk[i].std[j][0]*1e9); // } // } // } // extern void traceb(int level, const unsigned char *p, int n) // { // int i; // if (!fp_trace||level>level_trace) return; // for (i=0;i:error) *-----------------------------------------------------------------------------*/ int execcmd(const char *cmd) { trace(3, "execcmd: cmd=%s\n", cmd); return system(cmd); } /* create directory ------------------------------------------------------------ * create directory if not exist * args : char *path I file path to be saved * return : none * notes : not recursive. only one level *-----------------------------------------------------------------------------*/ void createdir(const char *path) { char buff[1024]; char *p; // tracet(3, "createdir: path=%s\n", path); if (strlen(path) < 1025) { std::strncpy(buff, path, 1024); buff[1023] = '\0'; } else { trace(1, "path is too long"); } if (!(p = strrchr(buff, FILEPATHSEP))) { return; } *p = '\0'; if (mkdir(buff, 0777) != 0) { trace(1, "Error creating folder"); } } /* replace string ------------------------------------------------------------*/ int repstr(char *str, const char *pat, const char *rep) { int len = static_cast(strlen(pat)); char buff[1024]; char *p; char *q; char *r; for (p = str, r = buff; *p; p = q + len) { if (!(q = strstr(p, pat))) { break; } strncpy(r, p, q - p); r += q - p; r += std::snprintf(r, sizeof(buff), "%s", rep); } if (p <= str) { return 0; } if (strlen(p) < 1025) { std::strncpy(r, p, 1024); r[1023] = '\0'; } else { trace(1, "pat array is too long"); } std::strncpy(str, buff, 1024); return 1; } /* replace keywords in file path ----------------------------------------------- * replace keywords in file path with date, time, rover and base station id * args : char *path I file path (see below) * char *rpath O file path in which keywords replaced (see below) * gtime_t time I time (gpst) (time.time==0: not replaced) * char *rov I rover id string ("": not replaced) * char *base I base station id string ("": not replaced) * return : status (1:keywords replaced, 0:no valid keyword in the path, * -1:no valid time) * notes : the following keywords in path are replaced by date, time and name * %Y -> yyyy : year (4 digits) (1900-2099) * %y -> yy : year (2 digits) (00-99) * %m -> mm : month (01-12) * %d -> dd : day of month (01-31) * %h -> hh : hours (00-23) * %M -> mm : minutes (00-59) * %S -> ss : seconds (00-59) * %n -> ddd : day of year (001-366) * %W -> wwww : gps week (0001-9999) * %D -> d : day of gps week (0-6) * %H -> h : hour code (a=0,b=1,c=2,...,x=23) * %ha-> hh : 3 hours (00,03,06,...,21) * %hb-> hh : 6 hours (00,06,12,18) * %hc-> hh : 12 hours (00,12) * %t -> mm : 15 minutes (00,15,30,45) * %r -> rrrr : rover id * %b -> bbbb : base station id *-----------------------------------------------------------------------------*/ int reppath(const char *path, char *rpath, gtime_t time, const char *rov, const char *base) { double ep[6]; double ep0[6] = {2000, 1, 1, 0, 0, 0}; int week; int dow; int doy; int stat = 0; char rep[64]; std::strncpy(rpath, path, 1024); if (!strstr(rpath, "%")) { return 0; } if (*rov) { stat |= repstr(rpath, "%r", rov); } if (*base) { stat |= repstr(rpath, "%b", base); } if (time.time != 0) { time2epoch(time, ep); ep0[0] = ep[0]; dow = static_cast(floor(time2gpst(time, &week) / 86400.0)); doy = static_cast(floor(timediff(time, epoch2time(ep0)) / 86400.0)) + 1; std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[3]) / 3) * 3); stat |= repstr(rpath, "%ha", rep); std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[3]) / 6) * 6); stat |= repstr(rpath, "%hb", rep); std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[3]) / 12) * 12); stat |= repstr(rpath, "%hc", rep); std::snprintf(rep, sizeof(rep), "%04.0f", ep[0]); stat |= repstr(rpath, "%Y", rep); std::snprintf(rep, sizeof(rep), "%02.0f", fmod(ep[0], 100.0)); stat |= repstr(rpath, "%y", rep); std::snprintf(rep, sizeof(rep), "%02.0f", ep[1]); stat |= repstr(rpath, "%m", rep); std::snprintf(rep, sizeof(rep), "%02.0f", ep[2]); stat |= repstr(rpath, "%d", rep); std::snprintf(rep, sizeof(rep), "%02.0f", ep[3]); stat |= repstr(rpath, "%h", rep); std::snprintf(rep, sizeof(rep), "%02.0f", ep[4]); stat |= repstr(rpath, "%M", rep); std::snprintf(rep, sizeof(rep), "%02.0f", floor(ep[5])); stat |= repstr(rpath, "%S", rep); std::snprintf(rep, sizeof(rep), "%03d", doy); stat |= repstr(rpath, "%n", rep); std::snprintf(rep, sizeof(rep), "%04d", week); stat |= repstr(rpath, "%W", rep); std::snprintf(rep, sizeof(rep), "%d", dow); stat |= repstr(rpath, "%D", rep); std::snprintf(rep, sizeof(rep), "%c", 'a' + static_cast(ep[3])); stat |= repstr(rpath, "%H", rep); std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[4]) / 15) * 15); stat |= repstr(rpath, "%t", rep); } else if (strstr(rpath, "%ha") || strstr(rpath, "%hb") || strstr(rpath, "%hc") || strstr(rpath, "%Y") || strstr(rpath, "%y") || strstr(rpath, "%m") || strstr(rpath, "%d") || strstr(rpath, "%h") || strstr(rpath, "%M") || strstr(rpath, "%S") || strstr(rpath, "%n") || strstr(rpath, "%W") || strstr(rpath, "%D") || strstr(rpath, "%H") || strstr(rpath, "%t")) { return -1; /* no valid time */ } return stat; } /* replace keywords in file path and generate multiple paths ------------------- * replace keywords in file path with date, time, rover and base station id * generate multiple keywords-replaced paths * args : char *path I file path (see below) * char *rpath[] O file paths in which keywords replaced * int nmax I max number of output file paths * gtime_t ts I time start (gpst) * gtime_t te I time end (gpst) * char *rov I rover id string ("": not replaced) * char *base I base station id string ("": not replaced) * return : number of replaced file paths * notes : see reppath() for replacements of keywords. * minimum interval of time replaced is 900s. *-----------------------------------------------------------------------------*/ int reppaths(const char *path, char *rpath[], int nmax, gtime_t ts, gtime_t te, const char *rov, const char *base) { gtime_t time; double tow; double tint = 86400.0; int i; int n = 0; int week; trace(3, "reppaths: path =%s nmax=%d rov=%s base=%s\n", path, nmax, rov, base); if (ts.time == 0 || te.time == 0 || timediff(ts, te) > 0.0) { return 0; } if (strstr(path, "%S") || strstr(path, "%M") || strstr(path, "%t")) { tint = 900.0; } else if (strstr(path, "%h") || strstr(path, "%H")) { tint = 3600.0; } tow = time2gpst(ts, &week); time = gpst2time(week, floor(tow / tint) * tint); while (timediff(time, te) <= 0.0 && n < nmax) { reppath(path, rpath[n], time, rov, base); if (n == 0 || strcmp(rpath[n], rpath[n - 1]) != 0) { n++; } time = timeadd(time, tint); } for (i = 0; i < n; i++) { trace(3, "reppaths: rpath=%s\n", rpath[i]); } return n; } /* satellite carrier wave length ----------------------------------------------- * get satellite carrier wave lengths * args : int sat I satellite number * int frq I frequency index (0:L1,1:L2,2:L5/3,...) * nav_t *nav I navigation messages * return : carrier wave length (m) (0.0: error) *-----------------------------------------------------------------------------*/ double satwavelen(int sat, int frq, const nav_t *nav) { const double freq_glo[] = {FREQ1_GLO, FREQ2_GLO}; const double dfrq_glo[] = {DFRQ1_GLO, DFRQ2_GLO}; int i; int sys = satsys(sat, nullptr); if (sys == SYS_GLO) { if (0 <= frq && frq <= 1) { for (i = 0; i < nav->ng; i++) { if (nav->geph[i].sat != sat) { continue; } return SPEED_OF_LIGHT_M_S / (freq_glo[frq] + dfrq_glo[frq] * nav->geph[i].frq); } } else if (frq == 2) { /* L3 */ return SPEED_OF_LIGHT_M_S / FREQ3_GLO; } } else if (sys == SYS_BDS) { if (frq == 0) { return SPEED_OF_LIGHT_M_S / FREQ1_BDS; /* B1 */ } if (frq == 1) { return SPEED_OF_LIGHT_M_S / FREQ2_BDS; /* B2 */ } if (frq == 2) { return SPEED_OF_LIGHT_M_S / FREQ3_BDS; /* B3 */ } } else { if (frq == 0) { return SPEED_OF_LIGHT_M_S / FREQ1; /* L1/E1 */ } if (frq == 1) { return SPEED_OF_LIGHT_M_S / FREQ2; /* L2 */ } if (frq == 2) { return SPEED_OF_LIGHT_M_S / FREQ5; /* L5/E5a */ } if (frq == 3) { return SPEED_OF_LIGHT_M_S / FREQ6; /* L6/LEX */ } if (frq == 4) { return SPEED_OF_LIGHT_M_S / FREQ7; /* E5b */ } if (frq == 5) { return SPEED_OF_LIGHT_M_S / FREQ8; /* E5a+b */ } if (frq == 6) { return SPEED_OF_LIGHT_M_S / FREQ9; /* S */ } } return 0.0; } /* geometric distance ---------------------------------------------------------- * compute geometric distance and receiver-to-satellite unit vector * args : double *rs I satellilte position (ecef at transmission) (m) * double *rr I receiver position (ecef at reception) (m) * double *e O line-of-sight vector (ecef) * return : geometric distance (m) (0>:error/no satellite position) * notes : distance includes sagnac effect correction *-----------------------------------------------------------------------------*/ double geodist(const double *rs, const double *rr, double *e) { double r; int i; if (norm_rtk(rs, 3) < RE_WGS84) { return -1.0; } for (i = 0; i < 3; i++) { e[i] = rs[i] - rr[i]; } r = norm_rtk(e, 3); for (i = 0; i < 3; i++) { e[i] /= r; } return r + GNSS_OMEGA_EARTH_DOT * (rs[0] * rr[1] - rs[1] * rr[0]) / SPEED_OF_LIGHT_M_S; } /* satellite azimuth/elevation angle ------------------------------------------- * compute satellite azimuth/elevation angle * args : double *pos I geodetic position {lat,lon,h} (rad,m) * double *e I receiver-to-satellilte unit vector (ecef) * double *azel IO azimuth/elevation {az,el} (rad) (NULL: no output) * (0.0<=azel[0]<2*pi,-pi/2<=azel[1]<=pi/2) * return : elevation angle (rad) *-----------------------------------------------------------------------------*/ double satazel(const double *pos, const double *e, double *azel) { double az = 0.0; double el = GNSS_PI / 2.0; double enu[3]; if (pos[2] > -RE_WGS84) { ecef2enu(pos, e, enu); az = dot(enu, enu, 2) < 1e-12 ? 0.0 : atan2(enu[0], enu[1]); if (az < 0.0) { az += 2 * GNSS_PI; } el = asin(enu[2]); } if (azel) { azel[0] = az; azel[1] = el; } return el; } /* compute dops ---------------------------------------------------------------- * compute DOP (dilution of precision) * args : int ns I number of satellites * double *azel I satellite azimuth/elevation angle (rad) * double elmin I elevation cutoff angle (rad) * double *dop O DOPs {GDOP,PDOP,HDOP,VDOP} * return : none * notes : dop[0]-[3] return 0 in case of dop computation error *-----------------------------------------------------------------------------*/ void dops(int ns, const double *azel, double elmin, double *dop) { double H[4 * MAXSAT]; double Q[16]; double cosel; double sinel; int i; int n; for (i = 0; i < 4; i++) { dop[i] = 0.0; } for (i = n = 0; i < ns && i < MAXSAT; i++) { if (azel[1 + i * 2] < elmin || azel[1 + i * 2] <= 0.0) { continue; } cosel = cos(azel[1 + i * 2]); sinel = sin(azel[1 + i * 2]); H[4 * n] = cosel * sin(azel[i * 2]); H[1 + 4 * n] = cosel * cos(azel[i * 2]); H[2 + 4 * n] = sinel; H[3 + 4 * n++] = 1.0; } if (n < 4) { return; } matmul("NT", 4, 4, n, 1.0, H, H, 0.0, Q); if (!matinv(Q, 4)) { dop[0] = std::sqrt(Q[0] + Q[5] + Q[10] + Q[15]); /* GDOP */ dop[1] = std::sqrt(Q[0] + Q[5] + Q[10]); /* PDOP */ dop[2] = std::sqrt(Q[0] + Q[5]); /* HDOP */ dop[3] = std::sqrt(Q[10]); /* VDOP */ } } /* ionosphere model ------------------------------------------------------------ * compute ionospheric delay by broadcast ionosphere model (klobuchar model) * args : gtime_t t I time (gpst) * double *ion I iono model parameters {a0,a1,a2,a3,b0,b1,b2,b3} * double *pos I receiver position {lat,lon,h} (rad,m) * double *azel I azimuth/elevation angle {az,el} (rad) * return : ionospheric delay (L1) (m) *-----------------------------------------------------------------------------*/ double ionmodel(gtime_t t, const double *ion, const double *pos, const double *azel) { const double ion_default[] = {/* 2004/1/1 */ 0.1118E-07, -0.7451e-08, -0.5961e-07, 0.1192E-06, 0.1167E+06, -0.2294E+06, -0.1311e+06, 0.1049E+07}; double tt; double f; double psi; double phi; double lam; double amp; double per; double x; int week; if (pos[2] < -1e3 || azel[1] <= 0) { return 0.0; } if (norm_rtk(ion, 8) <= 0.0) { ion = ion_default; } /* earth centered angle (semi-circle) */ psi = 0.0137 / (azel[1] / GNSS_PI + 0.11) - 0.022; /* subionospheric latitude/longitude (semi-circle) */ phi = pos[0] / GNSS_PI + psi * cos(azel[0]); if (phi > 0.416) { phi = 0.416; } else if (phi < -0.416) { phi = -0.416; } lam = pos[1] / GNSS_PI + psi * sin(azel[0]) / cos(phi * GNSS_PI); /* geomagnetic latitude (semi-circle) */ phi += 0.064 * cos((lam - 1.617) * GNSS_PI); /* local time (s) */ tt = 43200.0 * lam + time2gpst(t, &week); tt -= floor(tt / 86400.0) * 86400.0; /* 0 <= tt<86400 */ /* slant factor */ f = 1.0 + 16.0 * pow(0.53 - azel[1] / GNSS_PI, 3.0); /* ionospheric delay */ amp = ion[0] + phi * (ion[1] + phi * (ion[2] + phi * ion[3])); per = ion[4] + phi * (ion[5] + phi * (ion[6] + phi * ion[7])); amp = amp < 0.0 ? 0.0 : amp; per = per < 72000.0 ? 72000.0 : per; x = 2.0 * GNSS_PI * (tt - 50400.0) / per; return SPEED_OF_LIGHT_M_S * f * (fabs(x) < 1.57 ? 5E-9 + amp * (1.0 + x * x * (-0.5 + x * x / 24.0)) : 5E-9); } /* ionosphere mapping function ------------------------------------------------- * compute ionospheric delay mapping function by single layer model * args : double *pos I receiver position {lat,lon,h} (rad,m) * double *azel I azimuth/elevation angle {az,el} (rad) * return : ionospheric mapping function *-----------------------------------------------------------------------------*/ double ionmapf(const double *pos, const double *azel) { if (pos[2] >= HION) { return 1.0; } return 1.0 / cos(asin((RE_WGS84 + pos[2]) / (RE_WGS84 + HION) * sin(GNSS_PI / 2.0 - azel[1]))); } /* ionospheric pierce point position ------------------------------------------- * compute ionospheric pierce point (ipp) position and slant factor * args : double *pos I receiver position {lat,lon,h} (rad,m) * double *azel I azimuth/elevation angle {az,el} (rad) * double re I earth radius (km) * double hion I altitude of ionosphere (km) * double *posp O pierce point position {lat,lon,h} (rad,m) * return : slant factor * notes : see ref [2], only valid on the earth surface * fixing bug on ref [2] A.4.4.10.1 A-22,23 *-----------------------------------------------------------------------------*/ double ionppp(const double *pos, const double *azel, double re, double hion, double *posp) { double cosaz; double rp; double ap; double sinap; double tanap; rp = re / (re + hion) * cos(azel[1]); ap = GNSS_PI / 2.0 - azel[1] - asin(rp); sinap = sin(ap); tanap = tan(ap); cosaz = cos(azel[0]); posp[0] = asin(sin(pos[0]) * cos(ap) + cos(pos[0]) * sinap * cosaz); if ((pos[0] > 70.0 * D2R && tanap * cosaz > tan(GNSS_PI / 2.0 - pos[0])) || (pos[0] < -70.0 * D2R && -tanap * cosaz > tan(GNSS_PI / 2.0 + pos[0]))) { posp[1] = pos[1] + GNSS_PI - asin(sinap * sin(azel[0]) / cos(posp[0])); } else { posp[1] = pos[1] + asin(sinap * sin(azel[0]) / cos(posp[0])); } return 1.0 / sqrt(1.0 - rp * rp); } /* troposphere model ----------------------------------------------------------- * compute tropospheric delay by standard atmosphere and saastamoinen model * args : gtime_t time I time * double *pos I receiver position {lat,lon,h} (rad,m) * double *azel I azimuth/elevation angle {az,el} (rad) * double humi I relative humidity * return : tropospheric delay (m) *-----------------------------------------------------------------------------*/ double tropmodel(gtime_t time __attribute__((unused)), const double *pos, const double *azel, double humi) { const double temp0 = 15.0; /* temparature at sea level */ double hgt; double pres; double temp; double e; double z; double trph; double trpw; if (pos[2] < -100.0 || 1e4 < pos[2] || azel[1] <= 0) { return 0.0; } /* standard atmosphere */ hgt = pos[2] < 0.0 ? 0.0 : pos[2]; pres = 1013.25 * pow(1.0 - 2.2557E-5 * hgt, 5.2568); temp = temp0 - 6.5E-3 * hgt + 273.16; e = 6.108 * humi * exp((17.15 * temp - 4684.0) / (temp - 38.45)); /* saastamoninen model */ z = GNSS_PI / 2.0 - azel[1]; trph = 0.0022768 * pres / (1.0 - 0.00266 * cos(2.0 * pos[0]) - 0.00028 * hgt / 1e3) / cos(z); trpw = 0.002277 * (1255.0 / temp + 0.05) * e / cos(z); return trph + trpw; } #ifndef IERS_MODEL double interpc(const double coef[], double lat) { int i = static_cast(lat / 15.0); if (i < 1) { return coef[0]; } if (i > 4) { return coef[4]; } return coef[i - 1] * (1.0 - lat / 15.0 + i) + coef[i] * (lat / 15.0 - i); } double mapf(double el, double a, double b, double c) { double sinel = sin(el); return (1.0 + a / (1.0 + b / (1.0 + c))) / (sinel + (a / (sinel + b / (sinel + c)))); } double nmf(gtime_t time, const double pos[], const double azel[], double *mapfw) { /* ref [5] table 3 */ /* hydro-ave-a,b,c, hydro-amp-a,b,c, wet-a,b,c at latitude 15,30,45,60,75 */ const double coef[][5] = { {1.2769934E-3, 1.2683230E-3, 1.2465397E-3, 1.2196049E-3, 1.2045996E-3}, {2.9153695E-3, 2.9152299E-3, 2.9288445E-3, 2.9022565E-3, 2.9024912E-3}, {62.610505E-3, 62.837393E-3, 63.721774E-3, 63.824265E-3, 64.258455E-3}, {0.0000000E-0, 1.2709626E-5, 2.6523662E-5, 3.4000452E-5, 4.1202191e-5}, {0.0000000E-0, 2.1414979E-5, 3.0160779E-5, 7.2562722E-5, 11.723375E-5}, {0.0000000E-0, 9.0128400E-5, 4.3497037E-5, 84.795348E-5, 170.37206E-5}, {5.8021897E-4, 5.6794847E-4, 5.8118019E-4, 5.9727542E-4, 6.1641693E-4}, {1.4275268E-3, 1.5138625E-3, 1.4572752E-3, 1.5007428E-3, 1.7599082E-3}, {4.3472961e-2, 4.6729510E-2, 4.3908931e-2, 4.4626982E-2, 5.4736038E-2}}; const double aht[] = {2.53E-5, 5.49E-3, 1.14E-3}; /* height correction */ double y; double cosy; double ah[3]; double aw[3]; double dm; double el = azel[1]; double lat = pos[0] * R2D; double hgt = pos[2]; int i; if (el <= 0.0) { if (mapfw) { *mapfw = 0.0; } return 0.0; } /* year from doy 28, added half a year for southern latitudes */ y = (time2doy(time) - 28.0) / 365.25 + (lat < 0.0 ? 0.5 : 0.0); cosy = cos(2.0 * GNSS_PI * y); lat = fabs(lat); for (i = 0; i < 3; i++) { ah[i] = interpc(coef[i], lat) - interpc(coef[i + 3], lat) * cosy; aw[i] = interpc(coef[i + 6], lat); } /* ellipsoidal height is used instead of height above sea level */ dm = (1.0 / sin(el) - mapf(el, aht[0], aht[1], aht[2])) * hgt / 1e3; if (mapfw) { *mapfw = mapf(el, aw[0], aw[1], aw[2]); } return mapf(el, ah[0], ah[1], ah[2]) + dm; } #endif /* !IERS_MODEL */ /* troposphere mapping function ------------------------------------------------ * compute tropospheric mapping function by NMF * args : gtime_t t I time * double *pos I receiver position {lat,lon,h} (rad,m) * double *azel I azimuth/elevation angle {az,el} (rad) * double *mapfw IO wet mapping function (NULL: not output) * return : dry mapping function * note : see ref [5] (NMF) and [9] (GMF) * original JGR paper of [5] has bugs in eq.(4) and (5). the corrected * paper is obtained from: * ftp://web.haystack.edu/pub/aen/nmf/NMF_JGR.pdf *-----------------------------------------------------------------------------*/ double tropmapf(gtime_t time, const double pos[], const double azel[], double *mapfw) { #ifdef IERS_MODEL const double ep[] = {2000, 1, 1, 12, 0, 0}; double mjd, lat, lon, hgt, zd, gmfh, gmfw; #endif trace(4, "tropmapf: pos=%10.6f %11.6f %6.1f azel=%5.1f %4.1f\n", pos[0] * R2D, pos[1] * R2D, pos[2], azel[0] * R2D, azel[1] * R2D); if (pos[2] < -1000.0 || pos[2] > 20000.0) { if (mapfw) { *mapfw = 0.0; } return 0.0; } #ifdef IERS_MODEL mjd = 51544.5 + (timediff(time, epoch2time(ep))) / 86400.0; lat = pos[0]; lon = pos[1]; hgt = pos[2] - geoidh(pos); /* height in m (mean sea level) */ zd = GNSS_PI / 2.0 - azel[1]; /* call GMF */ gmf_(&mjd, &lat, &lon, &hgt, &zd, &gmfh, &gmfw); if (mapfw) *mapfw = gmfw; return gmfh; #else return nmf(time, pos, azel, mapfw); /* NMF */ #endif } /* interpolate antenna phase center variation --------------------------------*/ double interpvar(double ang, const double *var) { double a = ang / 5.0; /* ang=0-90 */ int i = static_cast(a); if (i < 0) { return var[0]; } if (i >= 18) { return var[18]; } return var[i] * (1.0 - a + i) + var[i + 1] * (a - i); } /* receiver antenna model ------------------------------------------------------ * compute antenna offset by antenna phase center parameters * args : pcv_t *pcv I antenna phase center parameters * double *azel I azimuth/elevation for receiver {az,el} (rad) * int opt I option (0:only offset,1:offset+pcv) * double *dant O range offsets for each frequency (m) * return : none * notes : current version does not support azimuth dependent terms *-----------------------------------------------------------------------------*/ void antmodel(const pcv_t *pcv, const double *del, const double *azel, int opt, double *dant) { double e[3]; double off[3]; double cosel = cos(azel[1]); int i; int j; trace(4, "antmodel: azel=%6.1f %4.1f opt=%d\n", azel[0] * R2D, azel[1] * R2D, opt); e[0] = sin(azel[0]) * cosel; e[1] = cos(azel[0]) * cosel; e[2] = sin(azel[1]); for (i = 0; i < NFREQ; i++) { for (j = 0; j < 3; j++) { off[j] = pcv->off[i][j] + del[j]; } dant[i] = -dot(off, e, 3) + (opt ? interpvar(90.0 - azel[1] * R2D, pcv->var[i]) : 0.0); } trace(5, "antmodel: dant=%6.3f %6.3f\n", dant[0], dant[1]); } /* satellite antenna model ------------------------------------------------------ * compute satellite antenna phase center parameters * args : pcv_t *pcv I antenna phase center parameters * double nadir I nadir angle for satellite (rad) * double *dant O range offsets for each frequency (m) * return : none *-----------------------------------------------------------------------------*/ void antmodel_s(const pcv_t *pcv, double nadir, double *dant) { int i; trace(4, "antmodel_s: nadir=%6.1f\n", nadir * R2D); for (i = 0; i < NFREQ; i++) { dant[i] = interpvar(nadir * R2D * 5.0, pcv->var[i]); } trace(5, "antmodel_s: dant=%6.3f %6.3f\n", dant[0], dant[1]); } /* sun and moon position in eci (ref [4] 5.1.1, 5.2.1) -----------------------*/ void sunmoonpos_eci(gtime_t tut, double *rsun, double *rmoon) { const double ep2000[] = {2000, 1, 1, 12, 0, 0}; double t; double f[5]; double eps; double Ms; double ls; double rs; double lm; double pm; double rm; double sine; double cose; double sinp; double cosp; double sinl; double cosl; trace(4, "sunmoonpos_eci: tut=%s\n", time_str(tut, 3)); t = timediff(tut, epoch2time(ep2000)) / 86400.0 / 36525.0; /* astronomical arguments */ ast_args(t, f); /* obliquity of the ecliptic */ eps = 23.439291 - 0.0130042 * t; sine = sin(eps * D2R); cose = cos(eps * D2R); /* sun position in eci */ if (rsun) { Ms = 357.5277233 + 35999.05034 * t; ls = 280.460 + 36000.770 * t + 1.914666471 * sin(Ms * D2R) + 0.019994643 * sin(2.0 * Ms * D2R); rs = AU * (1.000140612 - 0.016708617 * cos(Ms * D2R) - 0.000139589 * cos(2.0 * Ms * D2R)); sinl = sin(ls * D2R); cosl = cos(ls * D2R); rsun[0] = rs * cosl; rsun[1] = rs * cose * sinl; rsun[2] = rs * sine * sinl; trace(5, "rsun =%.3f %.3f %.3f\n", rsun[0], rsun[1], rsun[2]); } /* moon position in eci */ if (rmoon) { lm = 218.32 + 481267.883 * t + 6.29 * sin(f[0]) - 1.27 * sin(f[0] - 2.0 * f[3]) + 0.66 * sin(2.0 * f[3]) + 0.21 * sin(2.0 * f[0]) - 0.19 * sin(f[1]) - 0.11 * sin(2.0 * f[2]); pm = 5.13 * sin(f[2]) + 0.28 * sin(f[0] + f[2]) - 0.28 * sin(f[2] - f[0]) - 0.17 * sin(f[2] - 2.0 * f[3]); rm = RE_WGS84 / sin((0.9508 + 0.0518 * cos(f[0]) + 0.0095 * cos(f[0] - 2.0 * f[3]) + 0.0078 * cos(2.0 * f[3]) + 0.0028 * cos(2.0 * f[0])) * D2R); sinl = sin(lm * D2R); cosl = cos(lm * D2R); sinp = sin(pm * D2R); cosp = cos(pm * D2R); rmoon[0] = rm * cosp * cosl; rmoon[1] = rm * (cose * cosp * sinl - sine * sinp); rmoon[2] = rm * (sine * cosp * sinl + cose * sinp); trace(5, "rmoon=%.3f %.3f %.3f\n", rmoon[0], rmoon[1], rmoon[2]); } } /* sun and moon position ------------------------------------------------------- * get sun and moon position in ecef * args : gtime_t tut I time in ut1 * double *erpv I erp value {xp,yp,ut1_utc,lod} (rad,rad,s,s/d) * double *rsun IO sun position in ecef (m) (NULL: not output) * double *rmoon IO moon position in ecef (m) (NULL: not output) * double *gmst O gmst (rad) * return : none *-----------------------------------------------------------------------------*/ void sunmoonpos(gtime_t tutc, const double *erpv, double *rsun, double *rmoon, double *gmst) { gtime_t tut; double rs[3]; double rm[3]; double U[9]; double gmst_; trace(4, "sunmoonpos: tutc=%s\n", time_str(tutc, 3)); tut = timeadd(tutc, erpv[2]); /* utc -> ut1 */ /* sun and moon position in eci */ sunmoonpos_eci(tut, rsun ? rs : nullptr, rmoon ? rm : nullptr); /* eci to ecef transformation matrix */ eci2ecef(tutc, erpv, U, &gmst_); /* sun and moon position in ecef */ if (rsun) { matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun); } if (rmoon) { matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon); } if (gmst) { *gmst = gmst_; } } /* carrier smoothing ----------------------------------------------------------- * carrier smoothing by Hatch filter * args : obs_t *obs IO raw observation data/smoothed observation data * int ns I smoothing window size (epochs) * return : none *-----------------------------------------------------------------------------*/ void csmooth(obs_t *obs, int ns) { double Ps[2][MAXSAT][NFREQ] = {}; double Lp[2][MAXSAT][NFREQ] = {}; double dcp; int i; int j; int s; int r; int n[2][MAXSAT][NFREQ] = {}; obsd_t *p; trace(3, "csmooth: nobs=%d,ns=%d\n", obs->n, ns); for (i = 0; i < obs->n; i++) { p = &obs->data[i]; s = p->sat; r = p->rcv; for (j = 0; j < NFREQ; j++) { if (s <= 0 || MAXSAT < s || r <= 0 || 2 < r) { continue; } if (p->P[j] == 0.0 || p->L[j] == 0.0) { continue; } if (p->LLI[j]) { n[r - 1][s - 1][j] = 0; } if (n[r - 1][s - 1][j] == 0) { Ps[r - 1][s - 1][j] = p->P[j]; } else { dcp = LAM_CARR[j] * (p->L[j] - Lp[r - 1][s - 1][j]); Ps[r - 1][s - 1][j] = p->P[j] / ns + (Ps[r - 1][s - 1][j] + dcp) * (ns - 1) / ns; } if (++n[r - 1][s - 1][j] < ns) { p->P[j] = 0.0; } else { p->P[j] = Ps[r - 1][s - 1][j]; } Lp[r - 1][s - 1][j] = p->L[j]; } } } /* uncompress file ------------------------------------------------------------- * uncompress (uncompress/unzip/uncompact hatanaka-compression/tar) file * args : char *file I input file * char *uncfile O uncompressed file * return : status (-1:error,0:not compressed file,1:uncompress completed) * note : creates uncompressed file in tempolary directory * gzip and crx2rnx commands have to be installed in commands path *-----------------------------------------------------------------------------*/ int rtk_uncompress(const char *file, char *uncfile) { int stat = 0; char *p; char cmd[2048] = ""; char tmpfile[1024] = ""; char buff[1024]; char *fname; char *dir = const_cast(""); trace(3, "rtk_uncompress: file=%s\n", file); if (strlen(file) < 1025) { std::strncpy(tmpfile, file, 1024); tmpfile[1023] = '\0'; } else { trace(1, "file array is too long"); } if (!(p = strrchr(tmpfile, '.'))) { return 0; } /* uncompress by gzip */ if (!strcmp(p, ".z") || !strcmp(p, ".Z") || !strcmp(p, ".gz") || !strcmp(p, ".GZ") || !strcmp(p, ".zip") || !strcmp(p, ".ZIP")) { std::strncpy(uncfile, tmpfile, 1024); uncfile[p - tmpfile] = '\0'; std::snprintf(cmd, sizeof(cmd), R"(gzip -f -d -c "%s" > "%s")", tmpfile, uncfile); if (execcmd(cmd)) { if (remove(uncfile) != 0) { trace(1, "Error removing file"); } return -1; } if (strlen(uncfile) < 1025) { std::strncpy(tmpfile, uncfile, 1024); tmpfile[1023] = '\0'; } stat = 1; } /* extract tar file */ if ((p = strrchr(tmpfile, '.')) && !strcmp(p, ".tar")) { std::strncpy(uncfile, tmpfile, 1024); uncfile[p - tmpfile] = '\0'; std::strncpy(buff, tmpfile, 1024); fname = buff; if ((p = strrchr(buff, '/'))) { *p = '\0'; dir = fname; fname = p + 1; } std::ostringstream temp; std::string s_aux1(dir); std::string s_aux2(tmpfile); temp << "tar -C " << s_aux1 << " -xf " << s_aux2; std::string s_aux = temp.str(); int n = s_aux.length(); if (n < 2048) { for (int i = 0; i < n; i++) { cmd[i] = s_aux[i]; } } if (execcmd(cmd)) { if (stat) { if (remove(tmpfile) != 0) { trace(1, "Error removing file"); } } return -1; } if (stat) { if (remove(tmpfile) != 0) { trace(1, "Error removing file"); } } stat = 1; } /* extract hatanaka-compressed file by cnx2rnx */ else if ((p = strrchr(tmpfile, '.')) && strlen(p) > 3 && (*(p + 3) == 'd' || *(p + 3) == 'D')) { std::strncpy(uncfile, tmpfile, 1024); uncfile[p - tmpfile + 3] = *(p + 3) == 'D' ? 'O' : 'o'; std::snprintf(cmd, sizeof(cmd), R"(crx2rnx < "%s" > "%s")", tmpfile, uncfile); if (execcmd(cmd)) { if (remove(uncfile) != 0) { trace(1, "Error removing file"); } if (stat) { if (remove(tmpfile) != 0) { trace(1, "Error removing file"); } } return -1; } if (stat) { if (remove(tmpfile) != 0) { trace(1, "Error removing file"); } } stat = 1; } trace(3, "rtk_uncompress: stat=%d\n", stat); return stat; } /* expand file path ------------------------------------------------------------ * expand file path with wild-card (*) in file * args : char *path I file path to expand (captal insensitive) * char *paths O expanded file paths * int nmax I max number of expanded file paths * return : number of expanded file paths * notes : the order of expanded files is alphabetical order *-----------------------------------------------------------------------------*/ int expath(const char *path, char *paths[], int nmax) { int i; int j; int n = 0; char tmp[1024] = ""; struct dirent *d; DIR *dp; const char *file = path; char dir[1024] = ""; char s1[1024]; char s2[1024]; char *p; char *q; char *r; trace(3, "expath : path=%s nmax=%d\n", path, nmax); // TODO: Fix invalid conversion from ‘const char*’ to ‘char*’ // if ((p=strrchr(path,'/')) || (p=strrchr(path,'\\'))) { // file=p+1; strncpy(dir,path,p-path+1); dir[p-path+1]='\0'; // } if (!(dp = opendir(*dir ? dir : "."))) { return 0; } while ((d = readdir(dp))) { if (*(d->d_name) == '.') { continue; } std::snprintf(s1, sizeof(s1), "^%s$", d->d_name); std::snprintf(s2, sizeof(s2), "^%s$", file); for (p = s1; *p; p++) { *p = static_cast(tolower(static_cast(*p))); } for (p = s2; *p; p++) { *p = static_cast(tolower(static_cast(*p))); } for (p = s1, q = strtok_r(s2, "*", &r); q; q = strtok_r(nullptr, "*", &r)) { if ((p = strstr(p, q))) { p += strlen(q); } else { break; } } if (p && n < nmax) { std::snprintf(paths[n++], MAXSTRPATH + 255, "%s%s", dir, d->d_name); } } closedir(dp); /* sort paths in alphabetical order */ for (i = 0; i < n - 1; i++) { for (j = i + 1; j < n; j++) { if (strcmp(paths[i], paths[j]) > 0) { if (strlen(paths[i]) < 1025) { std::strncpy(tmp, paths[i], 1024); tmp[1023] = '\0'; } else { trace(1, "Path is too long"); } std::strncpy(paths[i], paths[j], 1024); std::strncpy(paths[j], tmp, 1024); } } } for (i = 0; i < n; i++) { trace(3, "expath : file=%s\n", paths[i]); } return n; } /* From RTKLIB 2.4.2 */ void windupcorr(gtime_t time, const double *rs, const double *rr, double *phw) { double ek[3]; double exs[3]; double eys[3]; double ezs[3]; double ess[3]; double exr[3]; double eyr[3]; double eks[3]; double ekr[3]; double E[9]; double dr[3]; double ds[3]; double drs[3]; double r[3]; double pos[3]; double rsun[3]; double cosp; double ph; double erpv[5] = {0}; int i; trace(4, "windupcorr: time=%s\n", time_str(time, 0)); /* sun position in ecef */ sunmoonpos(gpst2utc(time), erpv, rsun, nullptr, nullptr); /* unit vector satellite to receiver */ for (i = 0; i < 3; i++) { r[i] = rr[i] - rs[i]; } if (!normv3(r, ek)) { return; } /* unit vectors of satellite antenna */ for (i = 0; i < 3; i++) { r[i] = -rs[i]; } if (!normv3(r, ezs)) { return; } for (i = 0; i < 3; i++) { r[i] = rsun[i] - rs[i]; } if (!normv3(r, ess)) { return; } cross3(ezs, ess, r); if (!normv3(r, eys)) { return; } cross3(eys, ezs, exs); /* unit vectors of receiver antenna */ ecef2pos(rr, pos); xyz2enu(pos, E); exr[0] = E[1]; exr[1] = E[4]; exr[2] = E[7]; /* x = north */ eyr[0] = -E[0]; eyr[1] = -E[3]; eyr[2] = -E[6]; /* y = west */ /* phase windup effect */ cross3(ek, eys, eks); cross3(ek, eyr, ekr); for (i = 0; i < 3; i++) { ds[i] = exs[i] - ek[i] * dot(ek, exs, 3) - eks[i]; dr[i] = exr[i] - ek[i] * dot(ek, exr, 3) + ekr[i]; } cosp = dot(ds, dr, 3) / norm_rtk(ds, 3) / norm_rtk(dr, 3); if (cosp < -1.0) { cosp = -1.0; } else if (cosp > 1.0) { cosp = 1.0; } ph = acos(cosp) / 2.0 / GNSS_PI; cross3(ds, dr, drs); if (dot(ek, drs, 3) < 0.0) { ph = -ph; } *phw = ph + floor(*phw - ph + 0.5); /* in cycle */ }