/*!
* \file rtklib_rtkcmn.cc
* \brief rtklib common functions
* \authors
* - 2007-2013, T. Takasu
*
- 2017, Javier Arribas
*
- 2017, Carles Fernandez
*
*
* This is a derived work from RTKLIB http://www.rtklib.com/
* The original source code at https://github.com/tomojitakasu/RTKLIB is
* released under the BSD 2-clause license with an additional exclusive clause
* that does not apply here. This additional clause is reproduced below:
*
* " The software package includes some companion executive binaries or shared
* libraries necessary to execute APs on Windows. These licenses succeed to the
* original ones of these software. "
*
* Neither the executive binaries nor the shared libraries are required by, used
* or included in GNSS-SDR.
*
* -----------------------------------------------------------------------------
* Copyright (C) 2007-2013, T. Takasu
* Copyright (C) 2017, Javier Arribas
* Copyright (C) 2017, Carles Fernandez
* All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause
*
*----------------------------------------------------------------------------*/
#include "rtklib_rtkcmn.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
const double GPST0[] = {1980, 1, 6, 0, 0, 0}; /* gps time reference */
const double GST0[] = {1999, 8, 22, 0, 0, 0}; /* galileo system time reference */
const double BDT0[] = {2006, 1, 1, 0, 0, 0}; /* beidou time reference */
static double timeoffset_ = 0.0;
double leaps[MAXLEAPS + 1][7] = {/* leap seconds (y,m,d,h,m,s,utc-gpst) */
{2017, 1, 1, 0, 0, 0, -18},
{2015, 7, 1, 0, 0, 0, -17},
{2012, 7, 1, 0, 0, 0, -16},
{2009, 1, 1, 0, 0, 0, -15},
{2006, 1, 1, 0, 0, 0, -14},
{1999, 1, 1, 0, 0, 0, -13},
{1997, 7, 1, 0, 0, 0, -12},
{1996, 1, 1, 0, 0, 0, -11},
{1994, 7, 1, 0, 0, 0, -10},
{1993, 7, 1, 0, 0, 0, -9},
{1992, 7, 1, 0, 0, 0, -8},
{1991, 1, 1, 0, 0, 0, -7},
{1990, 1, 1, 0, 0, 0, -6},
{1988, 1, 1, 0, 0, 0, -5},
{1985, 7, 1, 0, 0, 0, -4},
{1983, 7, 1, 0, 0, 0, -3},
{1982, 7, 1, 0, 0, 0, -2},
{1981, 7, 1, 0, 0, 0, -1},
{}};
const char *formatstrs[32] = {/* stream format strings */
"RTCM 2", /* 0 */
"RTCM 3", /* 1 */
"NovAtel OEM6", /* 2 */
"NovAtel OEM3", /* 3 */
"u-blox", /* 4 */
"Superstar II", /* 5 */
"Hemisphere", /* 6 */
"SkyTraq", /* 7 */
"GW10", /* 8 */
"Javad", /* 9 */
"NVS BINR", /* 10 */
"BINEX", /* 11 */
"Trimble RT17", /* 12 */
"Septentrio", /* 13 */
"CMR/CMR+", /* 14 */
"LEX Receiver", /* 15 */
"RINEX", /* 16 */
"SP3", /* 17 */
"RINEX CLK", /* 18 */
"SBAS", /* 19 */
"NMEA 0183", /* 20 */
nullptr};
char obscodes[][3] = {
/* observation code strings */
"", "1C", "1P", "1W", "1Y", "1M", "1N", "1S", "1L", "1E", /* 0- 9 */
"1A", "1B", "1X", "1Z", "2C", "2D", "2S", "2L", "2X", "2P", /* 10-19 */
"2W", "2Y", "2M", "2N", "5I", "5Q", "5X", "7I", "7Q", "7X", /* 20-29 */
"6A", "6B", "6C", "6X", "6Z", "6S", "6L", "8L", "8Q", "8X", /* 30-39 */
"2I", "2Q", "6I", "6Q", "3I", "3Q", "3X", "1I", "1Q", "5A", /* 40-49 */
"5B", "5C", "9A", "9B", "9C", "9X", "", "", "", "" /* 50-59 */
};
unsigned char obsfreqs[] = {
/* 1:L1/E1, 2:L2/B1, 3:L5/E5a/L3, 4:L6/LEX/B3, 5:E5b/B2, 6:E5(a+b), 7:S */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0- 9 */
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, /* 10-19 */
2, 2, 2, 2, 3, 3, 3, 5, 5, 5, /* 20-29 */
4, 4, 4, 4, 4, 4, 4, 6, 6, 6, /* 30-39 */
2, 2, 4, 4, 3, 3, 3, 1, 1, 3, /* 40-49 */
3, 3, 7, 7, 7, 7, 0, 0, 0, 0 /* 50-59 */
};
char codepris[7][MAXFREQ][16] = {
/* code priority table */
/* L1/E1 L2/B1 L5/E5a/L3 L6/LEX/B3 E5b/B2 E5(a+b) S */
{"CPYWMNSL", "PYWCMNDSLX", "IQX", "", "", "", ""}, /* GPS */
{"PC", "PC", "IQX", "", "", "", ""}, /* GLO */
{"CABXZ", "", "IQX", "ABCXZ", "IQX", "IQX", ""}, /* GAL */
{"CSLXZ", "SLX", "IQX", "SLX", "", "", ""}, /* QZS */
{"C", "", "IQX", "", "", "", ""}, /* SBS */
{"IQX", "IQX", "IQX", "IQX", "IQX", "", ""}, /* BDS */
{"", "", "ABCX", "", "", "", "ABCX"} /* IRN */
};
fatalfunc_t *fatalfunc = nullptr; /* fatal callback function */
/* crc tables generated by util/gencrc ---------------------------------------*/
const uint16_t TBL_CR_C16[] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0};
const unsigned int TBL_CR_C24_Q[] = {
0x000000, 0x864CFB, 0x8AD50D, 0x0C99F6, 0x93E6E1, 0x15AA1A, 0x1933EC, 0x9F7F17,
0xA18139, 0x27CDC2, 0x2B5434, 0xAD18CF, 0x3267D8, 0xB42B23, 0xB8B2D5, 0x3EFE2E,
0xC54E89, 0x430272, 0x4F9B84, 0xC9D77F, 0x56A868, 0xD0E493, 0xDC7D65, 0x5A319E,
0x64CFB0, 0xE2834B, 0xEE1ABD, 0x685646, 0xF72951, 0x7165AA, 0x7DFC5C, 0xFBB0A7,
0x0CD1E9, 0x8A9D12, 0x8604E4, 0x00481F, 0x9F3708, 0x197BF3, 0x15E205, 0x93AEFE,
0xAD50D0, 0x2B1C2B, 0x2785DD, 0xA1C926, 0x3EB631, 0xB8FACA, 0xB4633C, 0x322FC7,
0xC99F60, 0x4FD39B, 0x434A6D, 0xC50696, 0x5A7981, 0xDC357A, 0xD0AC8C, 0x56E077,
0x681E59, 0xEE52A2, 0xE2CB54, 0x6487AF, 0xFBF8B8, 0x7DB443, 0x712DB5, 0xF7614E,
0x19A3D2, 0x9FEF29, 0x9376DF, 0x153A24, 0x8A4533, 0x0C09C8, 0x00903E, 0x86DCC5,
0xB822EB, 0x3E6E10, 0x32F7E6, 0xB4BB1D, 0x2BC40A, 0xAD88F1, 0xA11107, 0x275DFC,
0xDCED5B, 0x5AA1A0, 0x563856, 0xD074AD, 0x4F0BBA, 0xC94741, 0xC5DEB7, 0x43924C,
0x7D6C62, 0xFB2099, 0xF7B96F, 0x71F594, 0xEE8A83, 0x68C678, 0x645F8E, 0xE21375,
0x15723B, 0x933EC0, 0x9FA736, 0x19EBCD, 0x8694DA, 0x00D821, 0x0C41D7, 0x8A0D2C,
0xB4F302, 0x32BFF9, 0x3E260F, 0xB86AF4, 0x2715E3, 0xA15918, 0xADC0EE, 0x2B8C15,
0xD03CB2, 0x567049, 0x5AE9BF, 0xDCA544, 0x43DA53, 0xC596A8, 0xC90F5E, 0x4F43A5,
0x71BD8B, 0xF7F170, 0xFB6886, 0x7D247D, 0xE25B6A, 0x641791, 0x688E67, 0xEEC29C,
0x3347A4, 0xB50B5F, 0xB992A9, 0x3FDE52, 0xA0A145, 0x26EDBE, 0x2A7448, 0xAC38B3,
0x92C69D, 0x148A66, 0x181390, 0x9E5F6B, 0x01207C, 0x876C87, 0x8BF571, 0x0DB98A,
0xF6092D, 0x7045D6, 0x7CDC20, 0xFA90DB, 0x65EFCC, 0xE3A337, 0xEF3AC1, 0x69763A,
0x578814, 0xD1C4EF, 0xDD5D19, 0x5B11E2, 0xC46EF5, 0x42220E, 0x4EBBF8, 0xC8F703,
0x3F964D, 0xB9DAB6, 0xB54340, 0x330FBB, 0xAC70AC, 0x2A3C57, 0x26A5A1, 0xA0E95A,
0x9E1774, 0x185B8F, 0x14C279, 0x928E82, 0x0DF195, 0x8BBD6E, 0x872498, 0x016863,
0xFAD8C4, 0x7C943F, 0x700DC9, 0xF64132, 0x693E25, 0xEF72DE, 0xE3EB28, 0x65A7D3,
0x5B59FD, 0xDD1506, 0xD18CF0, 0x57C00B, 0xC8BF1C, 0x4EF3E7, 0x426A11, 0xC426EA,
0x2AE476, 0xACA88D, 0xA0317B, 0x267D80, 0xB90297, 0x3F4E6C, 0x33D79A, 0xB59B61,
0x8B654F, 0x0D29B4, 0x01B042, 0x87FCB9, 0x1883AE, 0x9ECF55, 0x9256A3, 0x141A58,
0xEFAAFF, 0x69E604, 0x657FF2, 0xE33309, 0x7C4C1E, 0xFA00E5, 0xF69913, 0x70D5E8,
0x4E2BC6, 0xC8673D, 0xC4FECB, 0x42B230, 0xDDCD27, 0x5B81DC, 0x57182A, 0xD154D1,
0x26359F, 0xA07964, 0xACE092, 0x2AAC69, 0xB5D37E, 0x339F85, 0x3F0673, 0xB94A88,
0x87B4A6, 0x01F85D, 0x0D61AB, 0x8B2D50, 0x145247, 0x921EBC, 0x9E874A, 0x18CBB1,
0xE37B16, 0x6537ED, 0x69AE1B, 0xEFE2E0, 0x709DF7, 0xF6D10C, 0xFA48FA, 0x7C0401,
0x42FA2F, 0xC4B6D4, 0xC82F22, 0x4E63D9, 0xD11CCE, 0x575035, 0x5BC9C3, 0xDD8538};
extern "C"
{
void dgemm_(char *, char *, int *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *);
extern void dgetrf_(int *, int *, double *, int *, int *, int *);
extern void dgetri_(int *, double *, int *, int *, double *, int *, int *);
extern void dgetrs_(char *, int *, int *, double *, int *, int *, double *, int *, int *);
}
/* function prototypes -------------------------------------------------------*/
#ifdef IERS_MODEL
extern int gmf_(double *mjd, double *lat, double *lon, double *hgt, double *zd,
double *gmfh, double *gmfw);
#endif
/* fatal error ---------------------------------------------------------------*/
void fatalerr(const char *format, ...)
{
char msg[1024];
va_list ap;
va_start(ap, format);
vsprintf(msg, format, ap);
va_end(ap);
fprintf(stderr, "%s", msg);
exit(-9);
}
/* satellite system+prn/slot number to satellite number ------------------------
* convert satellite system+prn/slot number to satellite number
* args : int sys I satellite system (SYS_GPS,SYS_GLO,...)
* int prn I satellite prn/slot number
* return : satellite number (0:error)
*-----------------------------------------------------------------------------*/
int satno(int sys, int prn)
{
if (prn <= 0)
{
return 0;
}
switch (sys)
{
case SYS_GPS:
if (prn < MINPRNGPS || MAXPRNGPS < prn)
{
return 0;
}
return prn - MINPRNGPS + 1;
case SYS_GLO:
if (prn < MINPRNGLO || MAXPRNGLO < prn)
{
return 0;
}
return NSATGPS + prn - MINPRNGLO + 1;
case SYS_GAL:
if (prn < MINPRNGAL || MAXPRNGAL < prn)
{
return 0;
}
return NSATGPS + NSATGLO + prn - MINPRNGAL + 1;
case SYS_QZS:
if (prn < MINPRNQZS || MAXPRNQZS < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + prn - MINPRNQZS + 1;
case SYS_BDS:
if (prn < MINPRNBDS || MAXPRNBDS < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + prn - MINPRNBDS + 1;
case SYS_IRN:
if (prn < MINPRNIRN || MAXPRNIRN < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + prn - MINPRNIRN + 1;
case SYS_LEO:
if (prn < MINPRNLEO || MAXPRNLEO < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + NSATIRN +
prn - MINPRNLEO + 1;
case SYS_SBS:
if (prn < MINPRNSBS || MAXPRNSBS < prn)
{
return 0;
}
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATBDS + NSATIRN + NSATLEO +
prn - MINPRNSBS + 1;
}
return 0;
}
/* satellite number to satellite system ----------------------------------------
* convert satellite number to satellite system
* args : int sat I satellite number (1-MAXSAT)
* int *prn IO satellite prn/slot number (NULL: no output)
* return : satellite system (SYS_GPS,SYS_GLO,...)
*-----------------------------------------------------------------------------*/
int satsys(int sat, int *prn)
{
int sys = SYS_NONE;
if (sat <= 0 || MAXSAT < sat)
{
sat = 0;
}
else if (sat <= NSATGPS)
{
sys = SYS_GPS;
sat += MINPRNGPS - 1;
}
else if ((sat -= NSATGPS) <= NSATGLO)
{
sys = SYS_GLO;
sat += MINPRNGLO - 1;
}
else if ((sat -= NSATGLO) <= NSATGAL)
{
sys = SYS_GAL;
sat += MINPRNGAL - 1;
}
else if ((sat -= NSATGAL) <= NSATQZS)
{
sys = SYS_QZS;
sat += MINPRNQZS - 1;
}
else if ((sat -= NSATQZS) <= NSATBDS)
{
sys = SYS_BDS;
sat += MINPRNBDS - 1;
}
else if ((sat -= NSATBDS) <= NSATIRN)
{
sys = SYS_IRN;
sat += MINPRNIRN - 1;
}
else if ((sat -= NSATIRN) <= NSATLEO)
{
sys = SYS_LEO;
sat += MINPRNLEO - 1;
}
else if ((sat -= NSATLEO) <= NSATSBS)
{
sys = SYS_SBS;
sat += MINPRNSBS - 1;
}
else
{
sat = 0;
}
if (prn)
{
*prn = sat;
}
return sys;
}
/* satellite id to satellite number --------------------------------------------
* convert satellite id to satellite number
* args : char *id I satellite id (nn,Gnn,Rnn,Enn,Jnn,Cnn,Inn or Snn)
* return : satellite number (0: error)
* notes : 120-142 and 193-199 are also recognized as sbas and qzss
*-----------------------------------------------------------------------------*/
int satid2no(const char *id)
{
int sys;
int prn;
char code;
if (sscanf(id, "%d", &prn) == 1)
{
if (MINPRNGPS <= prn && prn <= MAXPRNGPS)
{
sys = SYS_GPS;
}
else if (MINPRNSBS <= prn && prn <= MAXPRNSBS)
{
sys = SYS_SBS;
}
else if (MINPRNQZS <= prn && prn <= MAXPRNQZS)
{
sys = SYS_QZS;
}
else
{
return 0;
}
return satno(sys, prn);
}
if (sscanf(id, "%c%d", &code, &prn) < 2)
{
return 0;
}
switch (code)
{
case 'G':
sys = SYS_GPS;
prn += MINPRNGPS - 1;
break;
case 'R':
sys = SYS_GLO;
prn += MINPRNGLO - 1;
break;
case 'E':
sys = SYS_GAL;
prn += MINPRNGAL - 1;
break;
case 'J':
sys = SYS_QZS;
prn += MINPRNQZS - 1;
break;
case 'C':
sys = SYS_BDS;
prn += MINPRNBDS - 1;
break;
case 'I':
sys = SYS_IRN;
prn += MINPRNIRN - 1;
break;
case 'L':
sys = SYS_LEO;
prn += MINPRNLEO - 1;
break;
case 'S':
sys = SYS_SBS;
prn += 100;
break;
default:
return 0;
}
return satno(sys, prn);
}
/* satellite number to satellite id --------------------------------------------
* convert satellite number to satellite id
* args : int sat I satellite number
* char *id O satellite id (Gnn,Rnn,Enn,Jnn,Cnn,Inn or nnn)
* return : none
*-----------------------------------------------------------------------------*/
void satno2id(int sat, char *id)
{
int prn;
char id_aux[16];
switch (satsys(sat, &prn))
{
case SYS_GPS:
std::snprintf(id, sizeof(id_aux), "G%02d", prn - MINPRNGPS + 1);
return;
case SYS_GLO:
snprintf(id, sizeof(id_aux), "R%02d", prn - MINPRNGLO + 1);
return;
case SYS_GAL:
std::snprintf(id, sizeof(id_aux), "E%02d", prn - MINPRNGAL + 1);
return;
case SYS_QZS:
std::snprintf(id, sizeof(id_aux), "J%02d", prn - MINPRNQZS + 1);
return;
case SYS_BDS:
std::snprintf(id, sizeof(id_aux), "C%02d", prn - MINPRNBDS + 1);
return;
case SYS_IRN:
std::snprintf(id, sizeof(id_aux), "I%02d", prn - MINPRNIRN + 1);
return;
case SYS_LEO:
std::snprintf(id, sizeof(id_aux), "L%02d", prn - MINPRNLEO + 1);
return;
case SYS_SBS:
std::snprintf(id, sizeof(id_aux), "%03d", prn);
return;
}
}
/* test excluded satellite -----------------------------------------------------
* test excluded satellite
* args : int sat I satellite number
* int svh I sv health flag
* prcopt_t *opt I processing options (NULL: not used)
* return : status (1:excluded,0:not excluded)
*-----------------------------------------------------------------------------*/
int satexclude(int sat, int svh, const prcopt_t *opt)
{
int sys = satsys(sat, nullptr);
if (svh < 0)
{
trace(3, "ephemeris unavailable: sat=%3d svh=%02X\n", sat, svh);
return 1; /* ephemeris unavailable */
}
if (opt)
{
if (opt->exsats[sat - 1] == 1)
{
trace(3, "excluded satellite: sat=%3d svh=%02X\n", sat, svh);
return 1; /* excluded satellite */
}
if (opt->exsats[sat - 1] == 2)
{
return 0; /* included satellite */
}
if (!(sys & opt->navsys))
{
trace(3, "unselected sat sys: sat=%3d svh=%02X\n", sat, svh);
return 1; /* unselected sat sys */
}
}
if (sys == SYS_QZS)
{
svh &= 0xFE; /* mask QZSS LEX health */
}
if (svh)
{
trace(3, "unhealthy satellite: sat=%3d svh=%02X\n", sat, svh);
return 1;
}
return 0;
}
/* test SNR mask ---------------------------------------------------------------
* test SNR mask
* args : int base I rover or base-station (0:rover,1:base station)
* int freq I frequency (0:L1,1:L2,2:L3,...)
* double el I elevation angle (rad)
* double snr I C/N0 (dBHz)
* snrmask_t *mask I SNR mask
* return : status (1:masked,0:unmasked)
*-----------------------------------------------------------------------------*/
int testsnr(int base, int freq, double el, double snr,
const snrmask_t *mask)
{
double minsnr;
double a;
int i;
if (!mask->ena[base] || freq < 0 || freq >= NFREQ)
{
return 0;
}
a = (el * R2D + 5.0) / 10.0;
i = static_cast(floor(a));
a -= i;
if (i < 1)
{
minsnr = mask->mask[freq][0];
}
else if (i > 8)
{
minsnr = mask->mask[freq][8];
}
else
{
minsnr = (1.0 - a) * mask->mask[freq][i - 1] + a * mask->mask[freq][i];
}
return snr < minsnr;
}
/* obs type string to obs code -------------------------------------------------
* convert obs code type string to obs code
* args : char *str I obs code string ("1C","1P","1Y",...)
* int *freq IO frequency (1:L1,2:L2,3:L5,4:L6,5:L7,6:L8,0:err)
* (NULL: no output)
* return : obs code (CODE_???)
* notes : obs codes are based on reference [6] and qzss extension
*-----------------------------------------------------------------------------*/
unsigned char obs2code(const char *obs, int *freq)
{
int i;
if (freq)
{
*freq = 0;
}
for (i = 1; *obscodes[i]; i++)
{
if (strcmp(obscodes[i], obs) != 0)
{
continue;
}
if (freq)
{
*freq = obsfreqs[i];
}
return static_cast(i);
}
return CODE_NONE;
}
/* obs code to obs code string -------------------------------------------------
* convert obs code to obs code string
* args : unsigned char code I obs code (CODE_???)
* int *freq IO frequency (NULL: no output)
* (1:L1/E1, 2:L2/B1, 3:L5/E5a/L3, 4:L6/LEX/B3,
5:E5b/B2, 6:E5(a+b), 7:S)
* return : obs code string ("1C","1P","1P",...)
* notes : obs codes are based on reference [6] and qzss extension
*-----------------------------------------------------------------------------*/
char *code2obs(unsigned char code, int *freq)
{
if (freq)
{
*freq = 0;
}
if (code <= CODE_NONE || MAXCODE < code)
{
return const_cast("");
}
if (freq)
{
*freq = obsfreqs[code];
}
return obscodes[code];
}
/* set code priority -----------------------------------------------------------
* set code priority for multiple codes in a frequency
* args : int sys I system (or of SYS_???)
* int freq I frequency (1:L1,2:L2,3:L5,4:L6,5:L7,6:L8,7:L9)
* char *pri I priority of codes (series of code characters)
* (higher priority precedes lower)
* return : none
*-----------------------------------------------------------------------------*/
void setcodepri(int sys, int freq, const char *pri)
{
trace(3, "setcodepri : sys=%d freq=%d pri=%s\n", sys, freq, pri);
if (freq <= 0 || MAXFREQ < freq)
{
return;
}
if (strlen(pri) < 17)
{
if (sys & SYS_GPS)
{
std::strncpy(codepris[0][freq - 1], pri, 16);
codepris[0][freq - 1][15] = '\0';
}
if (sys & SYS_GLO)
{
std::strncpy(codepris[1][freq - 1], pri, 16);
codepris[1][freq - 1][15] = '\0';
}
if (sys & SYS_GAL)
{
std::strncpy(codepris[2][freq - 1], pri, 16);
codepris[2][freq - 1][15] = '\0';
}
if (sys & SYS_QZS)
{
std::strncpy(codepris[3][freq - 1], pri, 16);
codepris[3][freq - 1][15] = '\0';
}
if (sys & SYS_SBS)
{
std::strncpy(codepris[4][freq - 1], pri, 16);
codepris[4][freq - 1][15] = '\0';
}
if (sys & SYS_BDS)
{
std::strncpy(codepris[5][freq - 1], pri, 16);
codepris[5][freq - 1][15] = '\0';
}
if (sys & SYS_IRN)
{
std::strncpy(codepris[6][freq - 1], pri, 16);
codepris[6][freq - 1][15] = '\0';
}
}
else
{
trace(1, "pri array is too long");
}
}
/* get code priority -----------------------------------------------------------
* get code priority for multiple codes in a frequency
* args : int sys I system (SYS_???)
* unsigned char code I obs code (CODE_???)
* char *opt I code options (NULL:no option)
* return : priority (15:highest-1:lowest,0:error)
*-----------------------------------------------------------------------------*/
int getcodepri(int sys, unsigned char code, const char *opt)
{
const char *p;
const char *optstr;
char *obs;
char str[8] = "";
int i;
int j;
switch (sys)
{
case SYS_GPS:
i = 0;
optstr = "-GL%2s";
break;
case SYS_GLO:
i = 1;
optstr = "-RL%2s";
break;
case SYS_GAL:
i = 2;
optstr = "-EL%2s";
break;
case SYS_QZS:
i = 3;
optstr = "-JL%2s";
break;
case SYS_SBS:
i = 4;
optstr = "-SL%2s";
break;
case SYS_BDS:
i = 5;
optstr = "-CL%2s";
break;
case SYS_IRN:
i = 6;
optstr = "-IL%2s";
break;
default:
return 0;
}
obs = code2obs(code, &j);
/* parse code options */
for (p = opt; p && (p = strchr(p, '-')); p++)
{
if (sscanf(p, optstr, str) < 1 || str[0] != obs[0])
{
continue;
}
return str[1] == obs[1] ? 15 : 0;
}
/* search code priority */
return (p = strchr(codepris[i][j - 1], obs[1])) ? 14 - static_cast(p - codepris[i][j - 1]) : 0;
}
/* extract unsigned/signed bits ------------------------------------------------
* extract unsigned/signed bits from byte data
* args : unsigned char *buff I byte data
* int pos I bit position from start of data (bits)
* int len I bit length (bits) (len <= 32)
* return : extracted unsigned/signed bits
*-----------------------------------------------------------------------------*/
unsigned int getbitu(const unsigned char *buff, int pos, int len)
{
unsigned int bits = 0;
int i;
for (i = pos; i < pos + len; i++)
{
bits = (bits << 1) + ((buff[i / 8] >> (7 - i % 8)) & 1U);
}
return bits;
}
int getbits(const unsigned char *buff, int pos, int len)
{
unsigned int bits = getbitu(buff, pos, len);
if (len <= 0 || 32 <= len || !(bits & (1U << (len - 1))))
{
return static_cast(bits);
}
return static_cast(bits | (~0U << len)); /* extend sign */
}
/* set unsigned/signed bits ----------------------------------------------------
* set unsigned/signed bits to byte data
* args : unsigned char *buff IO byte data
* int pos I bit position from start of data (bits)
* int len I bit length (bits) (len <= 32)
* (unsigned) int I unsigned/signed data
* return : none
*-----------------------------------------------------------------------------*/
void setbitu(unsigned char *buff, int pos, int len, unsigned int data)
{
unsigned int mask = 1U << (len - 1);
int i;
if (len <= 0 || 32 < len)
{
return;
}
for (i = pos; i < pos + len; i++, mask >>= 1)
{
if (data & mask)
{
buff[i / 8] |= 1U << (7 - i % 8);
}
else
{
buff[i / 8] &= ~(1U << (7 - i % 8));
}
}
}
void setbits(unsigned char *buff, int pos, int len, int data)
{
if (data < 0)
{
data |= 1 << (len - 1);
}
else
{
data &= ~(1 << (len - 1)); /* set sign bit */
}
setbitu(buff, pos, len, static_cast(data));
}
/* crc-32 parity ---------------------------------------------------------------
* compute crc-32 parity for novatel raw
* args : unsigned char *buff I data
* int len I data length (bytes)
* return : crc-32 parity
* notes : see NovAtel OEMV firmware manual 1.7 32-bit CRC
*-----------------------------------------------------------------------------*/
unsigned int rtk_crc32(const unsigned char *buff, int len)
{
unsigned int crc = 0;
int i;
int j;
trace(4, "rtk_crc32: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc ^= buff[i];
for (j = 0; j < 8; j++)
{
if (crc & 1)
{
crc = (crc >> 1) ^ POLYCRC32;
}
else
{
crc >>= 1;
}
}
}
return crc;
}
/* crc-24q parity --------------------------------------------------------------
* compute crc-24q parity for sbas, rtcm3
* args : unsigned char *buff I data
* int len I data length (bytes)
* return : crc-24Q parity
* notes : see reference [2] A.4.3.3 Parity
*-----------------------------------------------------------------------------*/
unsigned int rtk_crc24q(const unsigned char *buff, int len)
{
unsigned int crc = 0;
int i;
trace(4, "rtk_crc24q: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc = ((crc << 8) & 0xFFFFFF) ^ TBL_CR_C24_Q[(crc >> 16) ^ buff[i]];
}
return crc;
}
/* crc-16 parity ---------------------------------------------------------------
* compute crc-16 parity for binex, nvs
* args : unsigned char *buff I data
* int len I data length (bytes)
* return : crc-16 parity
* notes : see reference [10] A.3.
*-----------------------------------------------------------------------------*/
uint16_t rtk_crc16(const unsigned char *buff, int len)
{
uint16_t crc = 0;
int i;
trace(4, "rtk_crc16: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc = (crc << 8) ^ TBL_CR_C16[((crc >> 8) ^ buff[i]) & 0xFF];
}
return crc;
}
/* decode navigation data word -------------------------------------------------
* check party and decode navigation data word
* args : unsigned int word I navigation data word (2+30bit)
* (previous word D29*-30* + current word D1-30)
* unsigned char *data O decoded navigation data without parity
* (8bitx3)
* return : status (1:ok,0:parity error)
* notes : see reference [1] 20.3.5.2 user parity algorithm
*-----------------------------------------------------------------------------*/
int decode_word(unsigned int word, unsigned char *data)
{
const unsigned int hamming[] = {
0xBB1F3480, 0x5D8F9A40, 0xAEC7CD00, 0x5763E680, 0x6BB1F340, 0x8B7A89C0};
unsigned int parity = 0;
unsigned int w;
int i;
trace(5, "decodeword: word=%08x\n", word);
if (word & 0x40000000)
{
word ^= 0x3FFFFFC0;
}
for (i = 0; i < 6; i++)
{
parity <<= 1;
for (w = (word & hamming[i]) >> 6; w; w >>= 1)
{
parity ^= w & 1;
}
}
if (parity != (word & 0x3F))
{
return 0;
}
for (i = 0; i < 3; i++)
{
data[i] = static_cast(word >> (22 - i * 8));
}
return 1;
}
/* new matrix ------------------------------------------------------------------
* allocate memory of matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
double *mat(int n, int m)
{
double *p;
if (n <= 0 || m <= 0)
{
return nullptr;
}
if (!(p = static_cast(malloc(sizeof(double) * n * m))))
{
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
}
return p;
}
/* new integer matrix ----------------------------------------------------------
* allocate memory of integer matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n <= 0 or m <= 0, return NULL)
*-----------------------------------------------------------------------------*/
int *imat(int n, int m)
{
int *p;
if (n <= 0 || m <= 0)
{
return nullptr;
}
if (!(p = static_cast(malloc(sizeof(int) * n * m))))
{
fatalerr("integer matrix memory allocation error: n=%d,m=%d\n", n, m);
}
return p;
}
/* zero matrix -----------------------------------------------------------------
* generate new zero matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n <= 0 or m <= 0, return NULL)
*-----------------------------------------------------------------------------*/
double *zeros(int n, int m)
{
double *p;
#if NOCALLOC
if ((p = mat(n, m)))
for (n = n * m - 1; n >= 0; n--) p[n] = 0.0;
#else
if (n <= 0 || m <= 0)
{
return nullptr;
}
if (!(p = static_cast(calloc(sizeof(double), n * m))))
{
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
}
#endif
return p;
}
/* identity matrix -------------------------------------------------------------
* generate new identity matrix
* args : int n I number of rows and columns of matrix
* return : matrix pointer (if n <= 0, return NULL)
*-----------------------------------------------------------------------------*/
double *eye(int n)
{
double *p;
int i;
if ((p = zeros(n, n)))
{
for (i = 0; i < n; i++)
{
p[i + i * n] = 1.0;
}
}
return p;
}
/* inner product ---------------------------------------------------------------
* inner product of vectors
* args : double *a,*b I vector a,b (n x 1)
* int n I size of vector a,b
* return : a'*b
*-----------------------------------------------------------------------------*/
double dot(const double *a, const double *b, int n)
{
double c = 0.0;
while (--n >= 0)
{
c += a[n] * b[n];
}
return c;
}
/* euclid norm -----------------------------------------------------------------
* euclid norm of vector
* args : double *a I vector a (n x 1)
* int n I size of vector a
* return : || a ||
*-----------------------------------------------------------------------------*/
double norm_rtk(const double *a, int n)
{
return std::sqrt(dot(a, a, n));
}
/* outer product of 3d vectors -------------------------------------------------
* outer product of 3d vectors
* args : double *a,*b I vector a,b (3 x 1)
* double *c O outer product (a x b) (3 x 1)
* return : none
*-----------------------------------------------------------------------------*/
void cross3(const double *a, const double *b, double *c)
{
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
/* normalize 3d vector ---------------------------------------------------------
* normalize 3d vector
* args : double *a I vector a (3 x 1)
* double *b O normlized vector (3 x 1) || b || = 1
* return : status (1:ok,0:error)
*-----------------------------------------------------------------------------*/
int normv3(const double *a, double *b)
{
double r;
if ((r = norm_rtk(a, 3)) <= 0.0)
{
return 0;
}
b[0] = a[0] / r;
b[1] = a[1] / r;
b[2] = a[2] / r;
return 1;
}
/* copy matrix -----------------------------------------------------------------
* copy matrix
* args : double *A O destination matrix A (n x m)
* double *B I source matrix B (n x m)
* int n,m I number of rows and columns of matrix
* return : none
*-----------------------------------------------------------------------------*/
void matcpy(double *A, const double *B, int n, int m)
{
memcpy(A, B, sizeof(double) * n * m);
}
/* matrix routines -----------------------------------------------------------*/
/* multiply matrix (wrapper of blas dgemm) -------------------------------------
* multiply matrix by matrix (C=alpha*A*B+beta*C)
* args : char *tr I transpose flags ("N":normal,"T":transpose)
* int n,k,m I size of (transposed) matrix A,B
* double alpha I alpha
* double *A,*B I (transposed) matrix A (n x m), B (m x k)
* double beta I beta
* double *C IO matrix C (n x k)
* return : none
*-----------------------------------------------------------------------------*/
void matmul(const char *tr, int n, int k, int m, double alpha,
const double *A, const double *B, double beta, double *C)
{
int lda = tr[0] == 'T' ? m : n;
int ldb = tr[1] == 'T' ? k : m;
dgemm_(const_cast(tr), const_cast(tr) + 1, &n, &k, &m, &alpha, const_cast(A), &lda, const_cast(B),
&ldb, &beta, C, &n);
}
/* inverse of matrix -----------------------------------------------------------
* inverse of matrix (A=A^-1)
* args : double *A IO matrix (n x n)
* int n I size of matrix A
* return : status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
int matinv(double *A, int n)
{
double *work;
int info;
int lwork = n * 16;
int *ipiv = imat(n, 1);
work = mat(lwork, 1);
dgetrf_(&n, &n, A, &n, ipiv, &info);
if (!info)
{
dgetri_(&n, A, &n, ipiv, work, &lwork, &info);
}
free(ipiv);
free(work);
return info;
}
/* solve linear equation -------------------------------------------------------
* solve linear equation (X=A\Y or X=A'\Y)
* args : char *tr I transpose flag ("N":normal,"T":transpose)
* double *A I input matrix A (n x n)
* double *Y I input matrix Y (n x m)
* int n,m I size of matrix A,Y
* double *X O X=A\Y or X=A'\Y (n x m)
* return : status (0:ok,0>:error)
* notes : matirix stored by column-major order (fortran convention)
* X can be same as Y
*-----------------------------------------------------------------------------*/
int solve(const char *tr, const double *A, const double *Y, int n,
int m, double *X)
{
double *B = mat(n, n);
int info;
int *ipiv = imat(n, 1);
matcpy(B, A, n, n);
matcpy(X, Y, n, m);
dgetrf_(&n, &n, B, &n, ipiv, &info);
if (!info)
{
dgetrs_(const_cast(tr), &n, &m, B, &n, ipiv, X, &n, &info);
}
free(ipiv);
free(B);
return info;
}
/* end of matrix routines ----------------------------------------------------*/
/* least square estimation -----------------------------------------------------
* least square estimation by solving normal equation (x=(A*A')^-1*A*y)
* args : double *A I transpose of (weighted) design matrix (n x m)
* double *y I (weighted) measurements (m x 1)
* int n,m I number of parameters and measurements (n <= m)
* double *x O estmated parameters (n x 1)
* double *Q O esimated parameters covariance matrix (n x n)
* return : status (0:ok,0>:error)
* notes : for weighted least square, replace A and y by A*w and w*y (w=W^(1/2))
* matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
int lsq(const double *A, const double *y, int n, int m, double *x,
double *Q)
{
double *Ay;
int info;
if (m < n)
{
return -1;
}
Ay = mat(n, 1);
matmul("NN", n, 1, m, 1.0, A, y, 0.0, Ay); /* Ay=A*y */
matmul("NT", n, n, m, 1.0, A, A, 0.0, Q); /* Q=A*A' */
if (!(info = matinv(Q, n)))
{
matmul("NN", n, 1, n, 1.0, Q, Ay, 0.0, x); /* x=Q^-1*Ay */
}
free(Ay);
return info;
}
/* kalman filter ---------------------------------------------------------------
* kalman filter state update as follows:
*
* K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P
*
* args : double *x I states vector (n x 1)
* double *P I covariance matrix of states (n x n)
* double *H I transpose of design matrix (n x m)
* double *v I innovation (measurement - model) (m x 1)
* double *R I covariance matrix of measurement error (m x m)
* int n,m I number of states and measurements
* double *xp O states vector after update (n x 1)
* double *Pp O covariance matrix of states after update (n x n)
* return : status (0:ok,<0:error)
* notes : matirix stored by column-major order (fortran convention)
* if state x[i]==0.0, not updates state x[i]/P[i+i*n]
*-----------------------------------------------------------------------------*/
int filter_(const double *x, const double *P, const double *H,
const double *v, const double *R, int n, int m,
double *xp, double *Pp)
{
double *F = mat(n, m);
double *Q = mat(m, m);
double *K = mat(n, m);
double *I = eye(n);
int info;
matcpy(Q, R, m, m);
matcpy(xp, x, n, 1);
matmul("NN", n, m, n, 1.0, P, H, 0.0, F); /* Q=H'*P*H+R */
matmul("TN", m, m, n, 1.0, H, F, 1.0, Q);
if (!(info = matinv(Q, m)))
{
matmul("NN", n, m, m, 1.0, F, Q, 0.0, K); /* K=P*H*Q^-1 */
matmul("NN", n, 1, m, 1.0, K, v, 1.0, xp); /* xp=x+K*v */
matmul("NT", n, n, m, -1.0, K, H, 1.0, I); /* Pp=(I-K*H')*P */
matmul("NN", n, n, n, 1.0, I, P, 0.0, Pp);
}
free(F);
free(Q);
free(K);
free(I);
return info;
}
int filter(double *x, double *P, const double *H, const double *v,
const double *R, int n, int m)
{
double *x_;
double *xp_;
double *P_;
double *Pp_;
double *H_;
int i;
int j;
int k;
int info;
int *ix;
ix = imat(n, 1);
for (i = k = 0; i < n; i++)
{
if (x[i] != 0.0 && P[i + i * n] > 0.0)
{
ix[k++] = i;
}
}
x_ = mat(k, 1);
xp_ = mat(k, 1);
P_ = mat(k, k);
Pp_ = mat(k, k);
for (i = 0; i < k; i++)
{
for (j = 0; j < k; j++)
{
Pp_[i * k + j] = 0.0;
}
}
H_ = mat(k, m);
for (i = 0; i < k; i++)
{
x_[i] = x[ix[i]];
for (j = 0; j < k; j++)
{
P_[i + j * k] = P[ix[i] + ix[j] * n];
}
for (j = 0; j < m; j++)
{
H_[i + j * k] = H[ix[i] + j * n];
}
}
info = filter_(x_, P_, H_, v, R, k, m, xp_, Pp_);
for (i = 0; i < k; i++)
{
x[ix[i]] = xp_[i];
for (j = 0; j < k; j++)
{
P[ix[i] + ix[j] * n] = Pp_[i + j * k];
}
}
free(ix);
free(x_);
free(xp_);
free(P_);
free(Pp_);
free(H_);
return info;
}
/* smoother --------------------------------------------------------------------
* combine forward and backward filters by fixed-interval smoother as follows:
*
* xs=Qs*(Qf^-1*xf+Qb^-1*xb), Qs=(Qf^-1+Qb^-1)^-1)
*
* args : double *xf I forward solutions (n x 1)
* args : double *Qf I forward solutions covariance matrix (n x n)
* double *xb I backward solutions (n x 1)
* double *Qb I backward solutions covariance matrix (n x n)
* int n I number of solutions
* double *xs O smoothed solutions (n x 1)
* double *Qs O smoothed solutions covariance matrix (n x n)
* return : status (0:ok,0>:error)
* notes : see reference [4] 5.2
* matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
int smoother(const double *xf, const double *Qf, const double *xb,
const double *Qb, int n, double *xs, double *Qs)
{
double *invQf = mat(n, n);
double *invQb = mat(n, n);
double *xx = mat(n, 1);
int i;
int info = -1;
matcpy(invQf, Qf, n, n);
matcpy(invQb, Qb, n, n);
if (!matinv(invQf, n) && !matinv(invQb, n))
{
for (i = 0; i < n * n; i++)
{
Qs[i] = invQf[i] + invQb[i];
}
if (!(info = matinv(Qs, n)))
{
matmul("NN", n, 1, n, 1.0, invQf, xf, 0.0, xx);
matmul("NN", n, 1, n, 1.0, invQb, xb, 1.0, xx);
matmul("NN", n, 1, n, 1.0, Qs, xx, 0.0, xs);
}
}
free(invQf);
free(invQb);
free(xx);
return info;
}
/* print matrix ----------------------------------------------------------------
* print matrix to stdout
* args : double *A I matrix A (n x m)
* int n,m I number of rows and columns of A
* int p,q I total columns, columns under decimal point
* (FILE *fp I output file pointer)
* return : none
* notes : matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
void matfprint(const double A[], int n, int m, int p, int q, FILE *fp)
{
int i;
int j;
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
{
fprintf(fp, " %*.*f", p, q, A[i + j * n]);
}
fprintf(fp, "\n");
}
}
void matsprint(const double A[], int n, int m, int p, int q, std::string &buffer)
{
int i;
int j;
buffer += '\n';
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
{
char buf_[256];
std::snprintf(buf_, sizeof(buf_), " %*.*f", p, q, A[i + j * n]);
std::string s(buf_);
buffer += s;
}
buffer += '\n';
}
}
void matprint(const double A[], int n, int m, int p, int q)
{
matfprint(A, n, m, p, q, stdout);
}
/* string to number ------------------------------------------------------------
* convert substring in string to number
* args : char *s I string ("... nnn.nnn ...")
* int i,n I substring position and width
* return : converted number (0.0:error)
*-----------------------------------------------------------------------------*/
double str2num(const char *s, int i, int n)
{
double value;
char str[256];
char *p = str;
if (i < 0 || static_cast(strlen(s)) < i || static_cast(sizeof(str)) - 1 < n)
{
return 0.0;
}
for (s += i; *s && --n >= 0; s++)
{
*p++ = *s == 'd' || *s == 'D' ? 'E' : *s;
}
*p = '\0';
return sscanf(str, "%lf", &value) == 1 ? value : 0.0;
}
/* string to time --------------------------------------------------------------
* convert substring in string to gtime_t struct
* args : char *s I string ("... yyyy mm dd hh mm ss ...")
* int i,n I substring position and width
* gtime_t *t O gtime_t struct
* return : status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
int str2time(const char *s, int i, int n, gtime_t *t)
{
double ep[6];
char str[256];
char *p = str;
if (i < 0 || static_cast(strlen(s)) < i || static_cast(sizeof(str)) - 1 < i)
{
return -1;
}
for (s += i; *s && --n >= 0;)
{
*p++ = *s++;
}
*p = '\0';
if (sscanf(str, "%lf %lf %lf %lf %lf %lf", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5) < 6)
{
return -1;
}
if (ep[0] < 100.0)
{
ep[0] += ep[0] < 80.0 ? 2000.0 : 1900.0;
}
*t = epoch2time(ep);
return 0;
}
/* convert calendar day/time to time -------------------------------------------
* convert calendar day/time to gtime_t struct
* args : double *ep I day/time {year,month,day,hour,min,sec}
* return : gtime_t struct
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
*-----------------------------------------------------------------------------*/
gtime_t epoch2time(const double *ep)
{
const int doy[] = {1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335};
gtime_t time = {0, 0};
int days;
int sec;
int year = static_cast(ep[0]);
int mon = static_cast(ep[1]);
int day = static_cast(ep[2]);
if (year < 1970 || 2099 < year || mon < 1 || 12 < mon)
{
return time;
}
/* leap year if year%4==0 in 1901-2099 */
days = (year - 1970) * 365 + (year - 1969) / 4 + doy[mon - 1] + day - 2 + (year % 4 == 0 && mon >= 3 ? 1 : 0);
sec = static_cast(floor(ep[5]));
time.time = static_cast(days) * 86400 + static_cast(ep[3]) * 3600 + static_cast(ep[4]) * 60 + sec;
time.sec = ep[5] - sec;
return time;
}
/* time to calendar day/time ---------------------------------------------------
* convert gtime_t struct to calendar day/time
* args : gtime_t t I gtime_t struct
* double *ep O day/time {year,month,day,hour,min,sec}
* return : none
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
*-----------------------------------------------------------------------------*/
void time2epoch(gtime_t t, double *ep)
{
const int mday[] = {/* # of days in a month */
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int days;
int sec;
int mon;
int day;
/* leap year if year%4==0 in 1901-2099 */
days = static_cast(t.time / 86400);
sec = static_cast(t.time - static_cast(days) * 86400);
for (day = days % 1461, mon = 0; mon < 48; mon++)
{
if (day >= mday[mon])
{
day -= mday[mon];
}
else
{
break;
}
}
ep[0] = 1970 + static_cast(days / 1461) * 4 + static_cast(mon / 12);
ep[1] = mon % 12 + 1;
ep[2] = day + 1;
ep[3] = static_cast(sec / 3600);
ep[4] = static_cast(sec % 3600 / 60);
ep[5] = sec % 60 + t.sec;
}
/* gps time to time ------------------------------------------------------------
* convert week and tow in gps time to gtime_t struct
* args : int week I week number in gps time
* double sec I time of week in gps time (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
gtime_t gpst2time(int week, double sec)
{
gtime_t t = epoch2time(GPST0);
if (sec < -1e9 || 1e9 < sec)
{
sec = 0.0;
}
t.time += static_cast(86400) * 7 * week + static_cast(sec);
t.sec = sec - static_cast(sec);
return t;
}
/* time to gps time ------------------------------------------------------------
* convert gtime_t struct to week and tow in gps time
* args : gtime_t t I gtime_t struct
* int *week IO week number in gps time (NULL: no output)
* return : time of week in gps time (s)
*-----------------------------------------------------------------------------*/
double time2gpst(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(GPST0);
time_t sec = t.time - t0.time;
int w = static_cast(sec / 604800);
if (week)
{
*week = w;
}
return (static_cast(sec - static_cast(w * 604800)) + t.sec);
}
/* galileo system time to time -------------------------------------------------
* convert week and tow in galileo system time (gst) to gtime_t struct
* args : int week I week number in gst
* double sec I time of week in gst (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
gtime_t gst2time(int week, double sec)
{
gtime_t t = epoch2time(GST0);
if (sec < -1e9 || 1e9 < sec)
{
sec = 0.0;
}
t.time += static_cast(86400) * 7 * week + static_cast(sec);
t.sec = sec - static_cast(sec);
return t;
}
/* time to galileo system time -------------------------------------------------
* convert gtime_t struct to week and tow in galileo system time (gst)
* args : gtime_t t I gtime_t struct
* int *week IO week number in gst (NULL: no output)
* return : time of week in gst (s)
*-----------------------------------------------------------------------------*/
double time2gst(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(GST0);
time_t sec = t.time - t0.time;
int w = static_cast(sec / (86400 * 7));
if (week)
{
*week = w;
}
return (sec - static_cast(w) * 86400 * 7) + t.sec;
}
/* beidou time (bdt) to time ---------------------------------------------------
* convert week and tow in beidou time (bdt) to gtime_t struct
* args : int week I week number in bdt
* double sec I time of week in bdt (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
gtime_t bdt2time(int week, double sec)
{
gtime_t t = epoch2time(BDT0);
if (sec < -1e9 || 1e9 < sec)
{
sec = 0.0;
}
t.time += static_cast(86400) * 7 * week + static_cast(sec);
t.sec = sec - static_cast(sec);
return t;
}
/* time to beidouo time (bdt) --------------------------------------------------
* convert gtime_t struct to week and tow in beidou time (bdt)
* args : gtime_t t I gtime_t struct
* int *week IO week number in bdt (NULL: no output)
* return : time of week in bdt (s)
*-----------------------------------------------------------------------------*/
double time2bdt(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(BDT0);
time_t sec = t.time - t0.time;
int w = static_cast(sec / (86400 * 7));
if (week)
{
*week = w;
}
return (sec - static_cast(w) * 86400 * 7) + t.sec;
}
/* add time --------------------------------------------------------------------
* add time to gtime_t struct
* args : gtime_t t I gtime_t struct
* double sec I time to add (s)
* return : gtime_t struct (t+sec)
*-----------------------------------------------------------------------------*/
gtime_t timeadd(gtime_t t, double sec)
{
double tt;
t.sec += sec;
tt = floor(t.sec);
t.time += static_cast(tt);
t.sec -= tt;
return t;
}
/* time difference -------------------------------------------------------------
* difference between gtime_t structs
* args : gtime_t t1,t2 I gtime_t structs
* return : time difference (t1-t2) (s)
*-----------------------------------------------------------------------------*/
double timediff(gtime_t t1, gtime_t t2)
{
return difftime(t1.time, t2.time) + t1.sec - t2.sec;
}
/* time difference accounting with week crossovers -----------------------------
* difference between gtime_t structs
* args : gtime_t t1,t2 I gtime_t structs
* return : time difference (t1-t2) (s)
*-----------------------------------------------------------------------------*/
double timediffweekcrossover(gtime_t t1, gtime_t t2)
{
// as stated in IS-GPS-200K table 20-IV footnote among other parts of the ICD,
// if tk=(t - toe) > 302400s then tk = tk - s
// if tk=(t - toe) < -302400s then tk = tk + 604800s
double tk = difftime(t1.time, t2.time) + t1.sec - t2.sec;
if (tk > 302400.0)
{
tk -= 604800.0;
}
else if (tk < -302400.0)
{
tk += 604800.0;
}
return tk;
}
/* get current time in utc -----------------------------------------------------
* get current time in utc
* args : none
* return : current time in utc
*-----------------------------------------------------------------------------*/
gtime_t timeget()
{
gtime_t time;
double ep[6] = {};
struct timeval tv
{
};
struct tm *tt;
if (!gettimeofday(&tv, nullptr) && (tt = gmtime(&tv.tv_sec)))
{
ep[0] = tt->tm_year + 1900;
ep[1] = tt->tm_mon + 1;
ep[2] = tt->tm_mday;
ep[3] = tt->tm_hour;
ep[4] = tt->tm_min;
ep[5] = tt->tm_sec + tv.tv_usec * 1e-6;
}
time = epoch2time(ep);
#ifdef CPUTIME_IN_GPST /* cputime operated in gpst */
time = gpst2utc(time);
#endif
return time;
}
/* set current time in utc -----------------------------------------------------
* set current time in utc
* args : gtime_t I current time in utc
* return : none
* notes : just set time offset between cpu time and current time
* the time offset is reflected to only timeget()
* not reentrant
*-----------------------------------------------------------------------------*/
void timeset(gtime_t t)
{
timeoffset_ += timediff(t, timeget());
}
/* read leap seconds table by text -------------------------------------------*/
int read_leaps_text(FILE *fp)
{
char buff[256];
char *p;
int i;
int n = 0;
int ep[6];
int ls;
rewind(fp);
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
{
if ((p = strchr(buff, '#')))
{
*p = '\0';
}
if (sscanf(buff, "%d %d %d %d %d %d %d", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5,
&ls) < 7)
{
continue;
}
for (i = 0; i < 6; i++)
{
leaps[n][i] = ep[i];
}
leaps[n++][6] = ls;
}
return n;
}
/* read leap seconds table by usno -------------------------------------------*/
int read_leaps_usno(FILE *fp)
{
static const char *months[] = {
"JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"};
double jd;
double tai_utc;
char buff[256];
char month[32];
char ls[MAXLEAPS][7] = {};
int i;
int j;
int y;
int m;
int d;
int n = 0;
rewind(fp);
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
{
if (sscanf(buff, "%d %s %d =JD %lf TAI-UTC= %lf", &y, month, &d, &jd,
&tai_utc) < 5)
{
continue;
}
if (y < 1980)
{
continue;
}
for (m = 1; m <= 12; m++)
{
if (!strcmp(months[m - 1], month))
{
break;
}
}
if (m >= 13)
{
continue;
}
ls[n][0] = y;
ls[n][1] = m;
ls[n][2] = d;
ls[n++][6] = static_cast(19.0 - tai_utc);
}
for (i = 0; i < n; i++)
{
for (j = 0; j < 7; j++)
{
leaps[i][j] = ls[n - i - 1][j];
}
}
return n;
}
/* read leap seconds table -----------------------------------------------------
* read leap seconds table
* args : char *file I leap seconds table file
* return : status (1:ok,0:error)
* notes : The leap second table should be as follows or leapsec.dat provided
* by USNO.
* (1) The records in the table file cosist of the following fields:
* year month day hour min sec UTC-GPST(s)
* (2) The date and time indicate the start UTC time for the UTC-GPST
* (3) The date and time should be descending order.
*-----------------------------------------------------------------------------*/
int read_leaps(const char *file)
{
FILE *fp;
int i;
int n;
if (!(fp = fopen(file, "re")))
{
return 0;
}
/* read leap seconds table by text or usno */
if (!(n = read_leaps_text(fp)) && !(n = read_leaps_usno(fp)))
{
fclose(fp);
return 0;
}
for (i = 0; i < 7; i++)
{
leaps[n][i] = 0.0;
}
fclose(fp);
return 1;
}
/* gpstime to utc --------------------------------------------------------------
* convert gpstime to utc considering leap seconds
* args : gtime_t t I time expressed in gpstime
* return : time expressed in utc
* notes : ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
gtime_t gpst2utc(gtime_t t)
{
gtime_t tu;
int i;
for (i = 0; leaps[i][0] > 0; i++)
{
tu = timeadd(t, leaps[i][6]);
if (timediff(tu, epoch2time(leaps[i])) >= 0.0)
{
return tu;
}
}
return t;
}
/* utc to gpstime --------------------------------------------------------------
* convert utc to gpstime considering leap seconds
* args : gtime_t t I time expressed in utc
* return : time expressed in gpstime
* notes : ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
gtime_t utc2gpst(gtime_t t)
{
int i;
for (i = 0; leaps[i][0] > 0; i++)
{
if (timediff(t, epoch2time(leaps[i])) >= 0.0)
{
return timeadd(t, -leaps[i][6]);
}
}
return t;
}
/* gpstime to bdt --------------------------------------------------------------
* convert gpstime to bdt (beidou navigation satellite system time)
* args : gtime_t t I time expressed in gpstime
* return : time expressed in bdt
* notes : ref [8] 3.3, 2006/1/1 00:00 BDT = 2006/1/1 00:00 UTC
* no leap seconds in BDT
* ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
gtime_t gpst2bdt(gtime_t t)
{
return timeadd(t, -14.0);
}
/* bdt to gpstime --------------------------------------------------------------
* convert bdt (beidou navigation satellite system time) to gpstime
* args : gtime_t t I time expressed in bdt
* return : time expressed in gpstime
* notes : see gpst2bdt()
*-----------------------------------------------------------------------------*/
gtime_t bdt2gpst(gtime_t t)
{
return timeadd(t, 14.0);
}
/* time to day and sec -------------------------------------------------------*/
double time2sec(gtime_t time, gtime_t *day)
{
double ep[6];
double sec;
time2epoch(time, ep);
sec = ep[3] * 3600.0 + ep[4] * 60.0 + ep[5];
ep[3] = ep[4] = ep[5] = 0.0;
*day = epoch2time(ep);
return sec;
}
/* utc to gmst -----------------------------------------------------------------
* convert utc to gmst (Greenwich mean sidereal time)
* args : gtime_t t I time expressed in utc
* double ut1_utc I UT1-UTC (s)
* return : gmst (rad)
*-----------------------------------------------------------------------------*/
double utc2gmst(gtime_t t, double ut1_utc)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
gtime_t tut;
gtime_t tut0;
double ut;
double t1;
double t2;
double t3;
double gmst0;
double gmst;
tut = timeadd(t, ut1_utc);
ut = time2sec(tut, &tut0);
t1 = timediff(tut0, epoch2time(ep2000)) / 86400.0 / 36525.0;
t2 = t1 * t1;
t3 = t2 * t1;
gmst0 = 24110.54841 + 8640184.812866 * t1 + 0.093104 * t2 - 6.2E-6 * t3;
gmst = gmst0 + 1.002737909350795 * ut;
return fmod(gmst, 86400.0) * GNSS_PI / 43200.0; /* 0 <= gmst <= 2*PI */
}
/* time to string --------------------------------------------------------------
* convert gtime_t struct to string
* args : gtime_t t I gtime_t struct
* char *s O string ("yyyy/mm/dd hh:mm:ss.ssss")
* int n I number of decimals
* return : none
*-----------------------------------------------------------------------------*/
void time2str(gtime_t t, char *s, int n)
{
double ep[6];
if (n < 0)
{
n = 0;
}
else if (n > 12)
{
n = 12;
}
if (1.0 - t.sec < 0.5 / pow(10.0, n))
{
t.time++;
t.sec = 0.0;
};
time2epoch(t, ep);
std::snprintf(s, MAXSTATMSG, "%04.0f/%02.0f/%02.0f %02.0f:%02.0f:%0*.*f", ep[0], ep[1], ep[2],
ep[3], ep[4], n <= 0 ? 2 : n + 3, n <= 0 ? 0 : n, ep[5]);
}
/* get time string -------------------------------------------------------------
* get time string
* args : gtime_t t I gtime_t struct
* int n I number of decimals
* return : time string
* notes : not reentrant, do not use multiple in a function
*-----------------------------------------------------------------------------*/
char *time_str(gtime_t t, int n)
{
static char buff[64];
time2str(t, buff, n);
return buff;
}
/* time to day of year ---------------------------------------------------------
* convert time to day of year
* args : gtime_t t I gtime_t struct
* return : day of year (days)
*-----------------------------------------------------------------------------*/
double time2doy(gtime_t t)
{
double ep[6];
time2epoch(t, ep);
ep[1] = ep[2] = 1.0;
ep[3] = ep[4] = ep[5] = 0.0;
return timediff(t, epoch2time(ep)) / 86400.0 + 1.0;
}
/* adjust gps week number ------------------------------------------------------
* adjust gps week number using cpu time
* args : int week I not-adjusted gps week number
* return : adjusted gps week number
*-----------------------------------------------------------------------------*/
int adjgpsweek(int week, bool pre_2009_file)
{
// int w;
// if (week < 512)
// {
// //assume receiver date > 7 april 2019
// w = week + 2048; //add weeks from 6-january-1980 to week rollover in 6 april 2019
// }
// else
// {
// //assume receiver date < 7 april 2019
// w = week + 1024; //add weeks from 6-january-1980 to week rollover in 21 august 1999
// }
int w;
if (week > 1023)
{
return week;
}
if (pre_2009_file == false)
{
(void)time2gpst(utc2gpst(timeget()), &w);
if (w < 1560)
{
w = 1560; /* use 2009/12/1 if time is earlier than 2009/12/1 */
}
return week + (w - week + 512) / 1024 * 1024;
}
else
{
w = week + 1024; // add weeks from 6-january-1980 to week rollover in 21 august 1999
return w;
}
}
/* get tick time ---------------------------------------------------------------
* get current tick in ms
* args : none
* return : current tick in ms
*-----------------------------------------------------------------------------*/
unsigned int tickget()
{
struct timespec tp = {0, 0};
struct timeval tv = {0, 0};
#ifdef CLOCK_MONOTONIC_RAW
/* linux kernel > 2.6.28 */
if (!clock_gettime(CLOCK_MONOTONIC_RAW, &tp))
{
return tp.tv_sec * 1000U + tp.tv_nsec / 1000000U;
}
gettimeofday(&tv, nullptr);
return tv.tv_sec * 1000U + tv.tv_usec / 1000U;
#else
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000u + tv.tv_usec / 1000u;
#endif
}
/* sleep ms --------------------------------------------------------------------
* sleep ms
* args : int ms I milliseconds to sleep (<0:no sleep)
* return : none
*-----------------------------------------------------------------------------*/
void sleepms(int ms)
{
struct timespec ts = {0, 0};
if (ms <= 0)
{
return;
}
ts.tv_sec = static_cast(ms / 1000);
ts.tv_nsec = static_cast(ms % 1000 * 1000000);
nanosleep(&ts, nullptr);
}
/* convert degree to deg-min-sec -----------------------------------------------
* convert degree to degree-minute-second
* args : double deg I degree
* double *dms O degree-minute-second {deg, min, sec}
* int ndec I number of decimals of second
* return : none
*-----------------------------------------------------------------------------*/
void deg2dms(double deg, double *dms, int ndec)
{
double sign = deg < 0.0 ? -1.0 : 1.0;
double a = fabs(deg);
double unit = pow(0.1, ndec);
dms[0] = floor(a);
a = (a - dms[0]) * 60.0;
dms[1] = floor(a);
a = (a - dms[1]) * 60.0;
dms[2] = floor(a / unit + 0.5) * unit;
if (dms[2] >= 60.0)
{
dms[2] = 0.0;
dms[1] += 1.0;
if (dms[1] >= 60.0)
{
dms[1] = 0.0;
dms[0] += 1.0;
}
}
dms[0] *= sign;
}
void deg2dms(double deg, double *dms)
{
double sign = deg < 0.0 ? -1.0 : 1.0;
double a = fabs(deg);
dms[0] = floor(a);
a = (a - dms[0]) * 60.0;
dms[1] = floor(a);
a = (a - dms[1]) * 60.0;
dms[2] = a;
dms[0] *= sign;
}
/* convert deg-min-sec to degree -----------------------------------------------
* convert degree-minute-second to degree
* args : double *dms I degree-minute-second {deg,min,sec}
* return : degree
*-----------------------------------------------------------------------------*/
double dms2deg(const double *dms)
{
double sign = dms[0] < 0.0 ? -1.0 : 1.0;
return sign * (fabs(dms[0]) + dms[1] / 60.0 + dms[2] / 3600.0);
}
/* transform ecef to geodetic position ------------------------------------------
* transform ecef position to geodetic position
* args : double *r I ecef position {x,y,z} (m)
* double *pos O geodetic position {lat,lon,h} (rad,m)
* return : none
* notes : WGS84, ellipsoidal height
*-----------------------------------------------------------------------------*/
void ecef2pos(const double *r, double *pos)
{
double e2 = FE_WGS84 * (2.0 - FE_WGS84);
double r2 = dot(r, r, 2);
double z;
double zk;
double v = RE_WGS84;
double sinp;
for (z = r[2], zk = 0.0; fabs(z - zk) >= 1e-4;)
{
zk = z;
sinp = z / sqrt(r2 + z * z);
v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
z = r[2] + v * e2 * sinp;
}
pos[0] = r2 > 1e-12 ? atan(z / sqrt(r2)) : (r[2] > 0.0 ? GNSS_PI / 2.0 : -GNSS_PI / 2.0);
pos[1] = r2 > 1e-12 ? atan2(r[1], r[0]) : 0.0;
pos[2] = sqrt(r2 + z * z) - v;
}
/* transform geodetic to ecef position -----------------------------------------
* transform geodetic position to ecef position
* args : double *pos I geodetic position {lat, lon,h} (rad,m)
* double *r O ecef position {x,y,z} (m)
* return : none
* notes : WGS84, ellipsoidal height
*-----------------------------------------------------------------------------*/
void pos2ecef(const double *pos, double *r)
{
double sinp = sin(pos[0]);
double cosp = cos(pos[0]);
double sinl = sin(pos[1]);
double cosl = cos(pos[1]);
double e2 = FE_WGS84 * (2.0 - FE_WGS84);
double v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
r[0] = (v + pos[2]) * cosp * cosl;
r[1] = (v + pos[2]) * cosp * sinl;
r[2] = (v * (1.0 - e2) + pos[2]) * sinp;
}
/* ecef to local coordinate transformation matrix ------------------------------
* compute ecef to local coordinate transformation matrix
* args : double *pos I geodetic position {lat,lon} (rad)
* double *E O ecef to local coord transformation matrix (3x3)
* return : none
* notes : matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
void xyz2enu(const double *pos, double *E)
{
double sinp = sin(pos[0]);
double cosp = cos(pos[0]);
double sinl = sin(pos[1]);
double cosl = cos(pos[1]);
E[0] = -sinl;
E[3] = cosl;
E[6] = 0.0;
E[1] = -sinp * cosl;
E[4] = -sinp * sinl;
E[7] = cosp;
E[2] = cosp * cosl;
E[5] = cosp * sinl;
E[8] = sinp;
}
/* transform ecef vector to local tangental coordinate -------------------------
* transform ecef vector to local tangental coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *r I vector in ecef coordinate {x,y,z}
* double *e O vector in local tangental coordinate {e,n,u}
* return : none
*-----------------------------------------------------------------------------*/
void ecef2enu(const double *pos, const double *r, double *e)
{
double E[9];
xyz2enu(pos, E);
matmul("NN", 3, 1, 3, 1.0, E, r, 0.0, e);
}
/* transform local vector to ecef coordinate -----------------------------------
* transform local tangental coordinate vector to ecef
* args : double *pos I geodetic position {lat,lon} (rad)
* double *e I vector in local tangental coordinate {e,n,u}
* double *r O vector in ecef coordinate {x,y,z}
* return : none
*-----------------------------------------------------------------------------*/
void enu2ecef(const double *pos, const double *e, double *r)
{
double E[9];
xyz2enu(pos, E);
matmul("TN", 3, 1, 3, 1.0, E, e, 0.0, r);
}
/* transform covariance to local tangental coordinate --------------------------
* transform ecef covariance to local tangental coordinate
* args : double *pos I geodetic position {lat, lon} (rad)
* double *P I covariance in ecef coordinate
* double *Q O covariance in local tangental coordinate
* return : none
*-----------------------------------------------------------------------------*/
void covenu(const double *pos, const double *P, double *Q)
{
double E[9];
double EP[9];
xyz2enu(pos, E);
matmul("NN", 3, 3, 3, 1.0, E, P, 0.0, EP);
matmul("NT", 3, 3, 3, 1.0, EP, E, 0.0, Q);
}
/* transform local enu coordinate covariance to xyz-ecef -----------------------
* transform local enu covariance to xyz-ecef coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *Q I covariance in local enu coordinate
* double *P O covariance in xyz-ecef coordinate
* return : none
*-----------------------------------------------------------------------------*/
void covecef(const double *pos, const double *Q, double *P)
{
double E[9];
double EQ[9];
xyz2enu(pos, E);
matmul("TN", 3, 3, 3, 1.0, E, Q, 0.0, EQ);
matmul("NN", 3, 3, 3, 1.0, EQ, E, 0.0, P);
}
/* astronomical arguments: f={l,l',F,D,OMG} (rad) ----------------------------*/
void ast_args(double t, double *f)
{
static const double fc[][5] = {/* coefficients for iau 1980 nutation */
{134.96340251, 1717915923.2178, 31.8792, 0.051635, -0.00024470},
{357.52910918, 129596581.0481, -0.5532, 0.000136, -0.00001149},
{93.27209062, 1739527262.8478, -12.7512, -0.001037, 0.00000417},
{297.85019547, 1602961601.2090, -6.3706, 0.006593, -0.00003169},
{125.04455501, -6962890.2665, 7.4722, 0.007702, -0.00005939}};
double tt[4];
int i;
int j;
for (tt[0] = t, i = 1; i < 4; i++)
{
tt[i] = tt[i - 1] * t;
}
for (i = 0; i < 5; i++)
{
f[i] = fc[i][0] * 3600.0;
for (j = 0; j < 4; j++)
{
f[i] += fc[i][j + 1] * tt[j];
}
f[i] = fmod(f[i] * AS2R, 2.0 * GNSS_PI);
}
}
/* iau 1980 nutation ---------------------------------------------------------*/
void nut_iau1980(double t, const double *f, double *dpsi, double *deps)
{
static const double nut[106][10] = {
{0, 0, 0, 0, 1, -6798.4, -171996, -174.2, 92025, 8.9},
{0, 0, 2, -2, 2, 182.6, -13187, -1.6, 5736, -3.1},
{0, 0, 2, 0, 2, 13.7, -2274, -0.2, 977, -0.5},
{0, 0, 0, 0, 2, -3399.2, 2062, 0.2, -895, 0.5},
{0, -1, 0, 0, 0, -365.3, -1426, 3.4, 54, -0.1},
{1, 0, 0, 0, 0, 27.6, 712, 0.1, -7, 0.0},
{0, 1, 2, -2, 2, 121.7, -517, 1.2, 224, -0.6},
{0, 0, 2, 0, 1, 13.6, -386, -0.4, 200, 0.0},
{1, 0, 2, 0, 2, 9.1, -301, 0.0, 129, -0.1},
{0, -1, 2, -2, 2, 365.2, 217, -0.5, -95, 0.3},
{-1, 0, 0, 2, 0, 31.8, 158, 0.0, -1, 0.0},
{0, 0, 2, -2, 1, 177.8, 129, 0.1, -70, 0.0},
{-1, 0, 2, 0, 2, 27.1, 123, 0.0, -53, 0.0},
{1, 0, 0, 0, 1, 27.7, 63, 0.1, -33, 0.0},
{0, 0, 0, 2, 0, 14.8, 63, 0.0, -2, 0.0},
{-1, 0, 2, 2, 2, 9.6, -59, 0.0, 26, 0.0},
{-1, 0, 0, 0, 1, -27.4, -58, -0.1, 32, 0.0},
{1, 0, 2, 0, 1, 9.1, -51, 0.0, 27, 0.0},
{-2, 0, 0, 2, 0, -205.9, -48, 0.0, 1, 0.0},
{-2, 0, 2, 0, 1, 1305.5, 46, 0.0, -24, 0.0},
{0, 0, 2, 2, 2, 7.1, -38, 0.0, 16, 0.0},
{2, 0, 2, 0, 2, 6.9, -31, 0.0, 13, 0.0},
{2, 0, 0, 0, 0, 13.8, 29, 0.0, -1, 0.0},
{1, 0, 2, -2, 2, 23.9, 29, 0.0, -12, 0.0},
{0, 0, 2, 0, 0, 13.6, 26, 0.0, -1, 0.0},
{0, 0, 2, -2, 0, 173.3, -22, 0.0, 0, 0.0},
{-1, 0, 2, 0, 1, 27.0, 21, 0.0, -10, 0.0},
{0, 2, 0, 0, 0, 182.6, 17, -0.1, 0, 0.0},
{0, 2, 2, -2, 2, 91.3, -16, 0.1, 7, 0.0},
{-1, 0, 0, 2, 1, 32.0, 16, 0.0, -8, 0.0},
{0, 1, 0, 0, 1, 386.0, -15, 0.0, 9, 0.0},
{1, 0, 0, -2, 1, -31.7, -13, 0.0, 7, 0.0},
{0, -1, 0, 0, 1, -346.6, -12, 0.0, 6, 0.0},
{2, 0, -2, 0, 0, -1095.2, 11, 0.0, 0, 0.0},
{-1, 0, 2, 2, 1, 9.5, -10, 0.0, 5, 0.0},
{1, 0, 2, 2, 2, 5.6, -8, 0.0, 3, 0.0},
{0, -1, 2, 0, 2, 14.2, -7, 0.0, 3, 0.0},
{0, 0, 2, 2, 1, 7.1, -7, 0.0, 3, 0.0},
{1, 1, 0, -2, 0, -34.8, -7, 0.0, 0, 0.0},
{0, 1, 2, 0, 2, 13.2, 7, 0.0, -3, 0.0},
{-2, 0, 0, 2, 1, -199.8, -6, 0.0, 3, 0.0},
{0, 0, 0, 2, 1, 14.8, -6, 0.0, 3, 0.0},
{2, 0, 2, -2, 2, 12.8, 6, 0.0, -3, 0.0},
{1, 0, 0, 2, 0, 9.6, 6, 0.0, 0, 0.0},
{1, 0, 2, -2, 1, 23.9, 6, 0.0, -3, 0.0},
{0, 0, 0, -2, 1, -14.7, -5, 0.0, 3, 0.0},
{0, -1, 2, -2, 1, 346.6, -5, 0.0, 3, 0.0},
{2, 0, 2, 0, 1, 6.9, -5, 0.0, 3, 0.0},
{1, -1, 0, 0, 0, 29.8, 5, 0.0, 0, 0.0},
{1, 0, 0, -1, 0, 411.8, -4, 0.0, 0, 0.0},
{0, 0, 0, 1, 0, 29.5, -4, 0.0, 0, 0.0},
{0, 1, 0, -2, 0, -15.4, -4, 0.0, 0, 0.0},
{1, 0, -2, 0, 0, -26.9, 4, 0.0, 0, 0.0},
{2, 0, 0, -2, 1, 212.3, 4, 0.0, -2, 0.0},
{0, 1, 2, -2, 1, 119.6, 4, 0.0, -2, 0.0},
{1, 1, 0, 0, 0, 25.6, -3, 0.0, 0, 0.0},
{1, -1, 0, -1, 0, -3232.9, -3, 0.0, 0, 0.0},
{-1, -1, 2, 2, 2, 9.8, -3, 0.0, 1, 0.0},
{0, -1, 2, 2, 2, 7.2, -3, 0.0, 1, 0.0},
{1, -1, 2, 0, 2, 9.4, -3, 0.0, 1, 0.0},
{3, 0, 2, 0, 2, 5.5, -3, 0.0, 1, 0.0},
{-2, 0, 2, 0, 2, 1615.7, -3, 0.0, 1, 0.0},
{1, 0, 2, 0, 0, 9.1, 3, 0.0, 0, 0.0},
{-1, 0, 2, 4, 2, 5.8, -2, 0.0, 1, 0.0},
{1, 0, 0, 0, 2, 27.8, -2, 0.0, 1, 0.0},
{-1, 0, 2, -2, 1, -32.6, -2, 0.0, 1, 0.0},
{0, -2, 2, -2, 1, 6786.3, -2, 0.0, 1, 0.0},
{-2, 0, 0, 0, 1, -13.7, -2, 0.0, 1, 0.0},
{2, 0, 0, 0, 1, 13.8, 2, 0.0, -1, 0.0},
{3, 0, 0, 0, 0, 9.2, 2, 0.0, 0, 0.0},
{1, 1, 2, 0, 2, 8.9, 2, 0.0, -1, 0.0},
{0, 0, 2, 1, 2, 9.3, 2, 0.0, -1, 0.0},
{1, 0, 0, 2, 1, 9.6, -1, 0.0, 0, 0.0},
{1, 0, 2, 2, 1, 5.6, -1, 0.0, 1, 0.0},
{1, 1, 0, -2, 1, -34.7, -1, 0.0, 0, 0.0},
{0, 1, 0, 2, 0, 14.2, -1, 0.0, 0, 0.0},
{0, 1, 2, -2, 0, 117.5, -1, 0.0, 0, 0.0},
{0, 1, -2, 2, 0, -329.8, -1, 0.0, 0, 0.0},
{1, 0, -2, 2, 0, 23.8, -1, 0.0, 0, 0.0},
{1, 0, -2, -2, 0, -9.5, -1, 0.0, 0, 0.0},
{1, 0, 2, -2, 0, 32.8, -1, 0.0, 0, 0.0},
{1, 0, 0, -4, 0, -10.1, -1, 0.0, 0, 0.0},
{2, 0, 0, -4, 0, -15.9, -1, 0.0, 0, 0.0},
{0, 0, 2, 4, 2, 4.8, -1, 0.0, 0, 0.0},
{0, 0, 2, -1, 2, 25.4, -1, 0.0, 0, 0.0},
{-2, 0, 2, 4, 2, 7.3, -1, 0.0, 1, 0.0},
{2, 0, 2, 2, 2, 4.7, -1, 0.0, 0, 0.0},
{0, -1, 2, 0, 1, 14.2, -1, 0.0, 0, 0.0},
{0, 0, -2, 0, 1, -13.6, -1, 0.0, 0, 0.0},
{0, 0, 4, -2, 2, 12.7, 1, 0.0, 0, 0.0},
{0, 1, 0, 0, 2, 409.2, 1, 0.0, 0, 0.0},
{1, 1, 2, -2, 2, 22.5, 1, 0.0, -1, 0.0},
{3, 0, 2, -2, 2, 8.7, 1, 0.0, 0, 0.0},
{-2, 0, 2, 2, 2, 14.6, 1, 0.0, -1, 0.0},
{-1, 0, 0, 0, 2, -27.3, 1, 0.0, -1, 0.0},
{0, 0, -2, 2, 1, -169.0, 1, 0.0, 0, 0.0},
{0, 1, 2, 0, 1, 13.1, 1, 0.0, 0, 0.0},
{-1, 0, 4, 0, 2, 9.1, 1, 0.0, 0, 0.0},
{2, 1, 0, -2, 0, 131.7, 1, 0.0, 0, 0.0},
{2, 0, 0, 2, 0, 7.1, 1, 0.0, 0, 0.0},
{2, 0, 2, -2, 1, 12.8, 1, 0.0, -1, 0.0},
{2, 0, -2, 0, 1, -943.2, 1, 0.0, 0, 0.0},
{1, -1, 0, -2, 0, -29.3, 1, 0.0, 0, 0.0},
{-1, 0, 0, 1, 1, -388.3, 1, 0.0, 0, 0.0},
{-1, -1, 0, 2, 1, 35.0, 1, 0.0, 0, 0.0},
{0, 1, 0, 1, 0, 27.3, 1, 0.0, 0, 0.0}};
double ang;
int i;
int j;
*dpsi = *deps = 0.0;
for (i = 0; i < 106; i++)
{
ang = 0.0;
for (j = 0; j < 5; j++)
{
ang += nut[i][j] * f[j];
}
*dpsi += (nut[i][6] + nut[i][7] * t) * sin(ang);
*deps += (nut[i][8] + nut[i][9] * t) * cos(ang);
}
*dpsi *= 1e-4 * AS2R; /* 0.1 mas -> rad */
*deps *= 1e-4 * AS2R;
}
/* eci to ecef transformation matrix -------------------------------------------
* compute eci to ecef transformation matrix
* args : gtime_t tutc I time in utc
* double *erpv I erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* double *U O eci to ecef transformation matrix (3 x 3)
* double *gmst IO greenwich mean sidereal time (rad)
* (NULL: no output)
* return : none
* note : see ref [3] chap 5
* not thread-safe
*-----------------------------------------------------------------------------*/
void eci2ecef(gtime_t tutc, const double *erpv, double *U, double *gmst)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
static gtime_t tutc_;
static double U_[9];
static double gmst_;
gtime_t tgps;
double eps;
double ze;
double th;
double z;
double t;
double t2;
double t3;
double dpsi;
double deps;
double gast;
double f[5];
double R1[9];
double R2[9];
double R3[9];
double R[9];
double W[9];
double N[9];
double P[9];
double NP[9];
int i;
trace(4, "eci2ecef: tutc=%s\n", time_str(tutc, 3));
if (fabs(timediff(tutc, tutc_)) < 0.01)
{ /* read cache */
for (i = 0; i < 9; i++)
{
U[i] = U_[i];
}
if (gmst)
{
*gmst = gmst_;
}
return;
}
tutc_ = tutc;
/* terrestrial time */
tgps = utc2gpst(tutc_);
t = (timediff(tgps, epoch2time(ep2000)) + 19.0 + 32.184) / 86400.0 / 36525.0;
t2 = t * t;
t3 = t2 * t;
/* astronomical arguments */
ast_args(t, f);
/* iau 1976 precession */
ze = (2306.2181 * t + 0.30188 * t2 + 0.017998 * t3) * AS2R;
th = (2004.3109 * t - 0.42665 * t2 - 0.041833 * t3) * AS2R;
z = (2306.2181 * t + 1.09468 * t2 + 0.018203 * t3) * AS2R;
eps = (84381.448 - 46.8150 * t - 0.00059 * t2 + 0.001813 * t3) * AS2R;
Rz(-z, R1);
Ry(th, R2);
Rz(-ze, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, P); /* P=Rz(-z)*Ry(th)*Rz(-ze) */
/* iau 1980 nutation */
nut_iau1980(t, f, &dpsi, &deps);
Rx(-eps - deps, R1);
Rz(-dpsi, R2);
Rx(eps, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */
/* greenwich apparent sidereal time (rad) */
gmst_ = utc2gmst(tutc_, erpv[2]);
gast = gmst_ + dpsi * cos(eps);
gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R;
/* eci to ecef transformation matrix */
Ry(-erpv[0], R1);
Rx(-erpv[1], R2);
Rz(gast, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, W);
matmul("NN", 3, 3, 3, 1.0, W, R3, 0.0, R); /* W=Ry(-xp)*Rx(-yp) */
matmul("NN", 3, 3, 3, 1.0, N, P, 0.0, NP);
matmul("NN", 3, 3, 3, 1.0, R, NP, 0.0, U_); /* U=W*Rz(gast)*N*P */
for (i = 0; i < 9; i++)
{
U[i] = U_[i];
}
if (gmst)
{
*gmst = gmst_;
}
trace(5, "gmst=%.12f gast=%.12f\n", gmst_, gast);
trace(5, "P=\n");
tracemat(5, P, 3, 3, 15, 12);
trace(5, "N=\n");
tracemat(5, N, 3, 3, 15, 12);
trace(5, "W=\n");
tracemat(5, W, 3, 3, 15, 12);
trace(5, "U=\n");
tracemat(5, U, 3, 3, 15, 12);
}
/* decode antenna parameter field --------------------------------------------*/
int decodef(char *p, int n, double *v)
{
int i;
for (i = 0; i < n; i++)
{
v[i] = 0.0;
}
for (i = 0, p = strtok(p, " "); p && i < n; p = strtok(nullptr, " "))
{
v[i++] = atof(p) * 1e-3;
}
return i;
}
/* add antenna parameter -----------------------------------------------------*/
void addpcv(const pcv_t *pcv, pcvs_t *pcvs)
{
pcv_t *pcvs_pcv;
if (pcvs->nmax <= pcvs->n)
{
pcvs->nmax += 256;
if (!(pcvs_pcv = static_cast(realloc(pcvs->pcv, sizeof(pcv_t) * pcvs->nmax))))
{
trace(1, "addpcv: memory allocation error\n");
free(pcvs->pcv);
pcvs->pcv = nullptr;
pcvs->n = pcvs->nmax = 0;
return;
}
pcvs->pcv = pcvs_pcv;
}
pcvs->pcv[pcvs->n++] = *pcv;
}
/* read ngs antenna parameter file -------------------------------------------*/
int readngspcv(const char *file, pcvs_t *pcvs)
{
FILE *fp;
static const pcv_t pcv0 = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
pcv_t pcv = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
double neu[3];
int n = 0;
char buff[256];
if (!(fp = fopen(file, "re")))
{
trace(2, "ngs pcv file open error: %s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (strlen(buff) >= 62 && buff[61] == '|')
{
continue;
}
if (buff[0] != ' ')
{
n = 0; /* start line */
}
if (++n == 1)
{
pcv = pcv0;
strncpy(pcv.type, buff, 61);
pcv.type[61] = '\0';
}
else if (n == 2)
{
if (decodef(buff, 3, neu) < 3)
{
continue;
}
pcv.off[0][0] = neu[1];
pcv.off[0][1] = neu[0];
pcv.off[0][2] = neu[2];
}
else if (n == 3)
{
decodef(buff, 10, pcv.var[0]);
}
else if (n == 4)
{
decodef(buff, 9, pcv.var[0] + 10);
}
else if (n == 5)
{
if (decodef(buff, 3, neu) < 3)
{
continue;
};
pcv.off[1][0] = neu[1];
pcv.off[1][1] = neu[0];
pcv.off[1][2] = neu[2];
}
else if (n == 6)
{
decodef(buff, 10, pcv.var[1]);
}
else if (n == 7)
{
decodef(buff, 9, pcv.var[1] + 10);
addpcv(&pcv, pcvs);
}
}
fclose(fp);
return 1;
}
/* read antex file ----------------------------------------------------------*/
int readantex(const char *file, pcvs_t *pcvs)
{
FILE *fp;
static const pcv_t pcv0 = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
pcv_t pcv = {0, {}, {}, {0, 0}, {0, 0}, {{}, {}}, {{}, {}}};
double neu[3];
int i;
int f;
int freq = 0;
int state = 0;
int freqs[] = {1, 2, 5, 6, 7, 8, 0};
char buff[256];
trace(3, "readantex: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
trace(2, "antex pcv file open error: %s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (strlen(buff) < 60 || strstr(buff + 60, "COMMENT"))
{
continue;
}
if (strstr(buff + 60, "START OF ANTENNA"))
{
pcv = pcv0;
state = 1;
}
if (strstr(buff + 60, "END OF ANTENNA"))
{
addpcv(&pcv, pcvs);
state = 0;
}
if (!state)
{
continue;
}
if (strstr(buff + 60, "TYPE / SERIAL NO"))
{
strncpy(pcv.type, buff, 20);
pcv.type[20] = '\0';
strncpy(pcv.code, buff + 20, 20);
pcv.code[20] = '\0';
if (!strncmp(pcv.code + 3, " ", 8))
{
pcv.sat = satid2no(pcv.code);
}
}
else if (strstr(buff + 60, "VALID FROM"))
{
if (!str2time(buff, 0, 43, &pcv.ts))
{
continue;
}
}
else if (strstr(buff + 60, "VALID UNTIL"))
{
if (!str2time(buff, 0, 43, &pcv.te))
{
continue;
}
}
else if (strstr(buff + 60, "START OF FREQUENCY"))
{
if (sscanf(buff + 4, "%d", &f) < 1)
{
continue;
}
for (i = 0; i < NFREQ; i++)
{
if (freqs[i] == f)
{
break;
}
}
if (i < NFREQ)
{
freq = i + 1;
}
}
else if (strstr(buff + 60, "END OF FREQUENCY"))
{
freq = 0;
}
else if (strstr(buff + 60, "NORTH / EAST / UP"))
{
if (freq < 1 || NFREQ < freq)
{
continue;
}
if (decodef(buff, 3, neu) < 3)
{
continue;
}
pcv.off[freq - 1][0] = neu[pcv.sat ? 0 : 1]; /* x or e */
pcv.off[freq - 1][1] = neu[pcv.sat ? 1 : 0]; /* y or n */
pcv.off[freq - 1][2] = neu[2]; /* z or u */
}
else if (strstr(buff, "NOAZI"))
{
if (freq < 1 || NFREQ < freq)
{
continue;
}
if ((i = decodef(buff + 8, 19, pcv.var[freq - 1])) <= 0)
{
continue;
}
for (; i < 19; i++)
{
pcv.var[freq - 1][i] = pcv.var[freq - 1][i - 1];
}
}
}
fclose(fp);
return 1;
}
/* read antenna parameters ------------------------------------------------------
* read antenna parameters
* args : char *file I antenna parameter file (antex)
* pcvs_t *pcvs IO antenna parameters
* return : status (1:ok,0:file open error)
* notes : file with the externsion .atx or .ATX is recognized as antex
* file except for antex is recognized ngs antenna parameters
* see reference [3]
* only support non-azimuth-depedent parameters
*-----------------------------------------------------------------------------*/
int readpcv(const char *file, pcvs_t *pcvs)
{
pcv_t *pcv;
const char *ext;
int i;
int stat;
trace(3, "readpcv: file=%s\n", file);
if (!(ext = strrchr(file, '.')))
{
ext = "";
}
if (!strcmp(ext, ".atx") || !strcmp(ext, ".ATX"))
{
stat = readantex(file, pcvs);
}
else
{
stat = readngspcv(file, pcvs);
}
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
trace(4, "sat=%2d type=%20s code=%s off=%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
pcv->sat, pcv->type, pcv->code, pcv->off[0][0], pcv->off[0][1],
pcv->off[0][2], pcv->off[1][0], pcv->off[1][1], pcv->off[1][2]);
}
return stat;
}
/* search antenna parameter ----------------------------------------------------
* read satellite antenna phase center position
* args : int sat I satellite number (0: receiver antenna)
* char *type I antenna type for receiver antenna
* gtime_t time I time to search parameters
* pcvs_t *pcvs IO antenna parameters
* return : antenna parameter (NULL: no antenna)
*-----------------------------------------------------------------------------*/
pcv_t *searchpcv(int sat, const char *type, gtime_t time,
const pcvs_t *pcvs)
{
pcv_t *pcv;
char buff[MAXANT] = "";
char *types[2];
char *p;
int i;
int j;
int n = 0;
trace(3, "searchpcv: sat=%2d type=%s\n", sat, type);
if (sat)
{ /* search satellite antenna */
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
if (pcv->sat != sat)
{
continue;
}
if (pcv->ts.time != 0 && timediff(pcv->ts, time) > 0.0)
{
continue;
}
if (pcv->te.time != 0 && timediff(pcv->te, time) < 0.0)
{
continue;
}
return pcv;
}
}
else
{
if (strlen(type) < MAXANT + 1)
{
std::strncpy(buff, type, MAXANT);
buff[MAXANT - 1] = '\0';
}
else
{
trace(1, "type array is too long");
}
for (p = strtok(buff, " "); p && n < 2; p = strtok(nullptr, " "))
{
types[n++] = p;
}
if (n <= 0)
{
return nullptr;
}
/* search receiver antenna with radome at first */
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
for (j = 0; j < n; j++)
{
if (!strstr(pcv->type, types[j]))
{
break;
}
}
if (j >= n)
{
return pcv;
}
}
/* search receiver antenna without radome */
for (i = 0; i < pcvs->n; i++)
{
pcv = pcvs->pcv + i;
if (strstr(pcv->type, types[0]) != pcv->type)
{
continue;
}
trace(2, "pcv without radome is used type=%s\n", type);
return pcv;
}
}
return nullptr;
}
/* read station positions ------------------------------------------------------
* read positions from station position file
* args : char *file I station position file containing
* lat(deg) lon(deg) height(m) name in a line
* char *rcvs I station name
* double *pos O station position {lat,lon,h} (rad/m)
* (all 0 if search error)
* return : none
*-----------------------------------------------------------------------------*/
void readpos(const char *file, const char *rcv, double *pos)
{
static double poss[2048][3];
static char stas[2048][16];
FILE *fp;
int i;
int j;
int len;
int np = 0;
char buff[256];
char str[256];
trace(3, "readpos: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
fprintf(stderr, "reference position file open error : %s\n", file);
return;
}
while (np < 2048 && fgets(buff, sizeof(buff), fp))
{
if (buff[0] == '%' || buff[0] == '#')
{
continue;
}
if (sscanf(buff, "%lf %lf %lf %s", &poss[np][0], &poss[np][1], &poss[np][2],
str) < 4)
{
continue;
}
// strncpy(stas[np], str, 15); This line triggers a warning. Replaced by:
memcpy(stas[np], str, 15 * sizeof(stas[np][0]));
stas[np++][15] = '\0';
}
fclose(fp);
len = static_cast(strlen(rcv));
for (i = 0; i < np; i++)
{
if (strncmp(stas[i], rcv, len) != 0)
{
continue;
}
for (j = 0; j < 3; j++)
{
pos[j] = poss[i][j];
}
pos[0] *= D2R;
pos[1] *= D2R;
return;
}
pos[0] = pos[1] = pos[2] = 0.0;
}
/* read blq record -----------------------------------------------------------*/
int readblqrecord(FILE *fp, double *odisp)
{
double v[11];
char buff[256];
int i;
int n = 0;
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "$$", 2))
{
continue;
}
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10) < 11)
{
continue;
}
for (i = 0; i < 11; i++)
{
odisp[n + i * 6] = v[i];
}
if (++n == 6)
{
return 1;
}
}
return 0;
}
/* read blq ocean tide loading parameters --------------------------------------
* read blq ocean tide loading parameters
* args : char *file I BLQ ocean tide loading parameter file
* char *sta I station name
* double *odisp O ocean tide loading parameters
* return : status (1:ok, 0:file open error)
*-----------------------------------------------------------------------------*/
int readblq(const char *file, const char *sta, double *odisp)
{
FILE *fp;
char buff[256];
char staname[32] = "";
char name[32];
char *p;
/* station name to upper case */
sscanf(sta, "%16s", staname);
for (p = staname; (*p = static_cast(toupper(static_cast(*p)))); p++)
{
}
if (!(fp = fopen(file, "re")))
{
trace(2, "blq file open error: file=%s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "$$", 2) || strlen(buff) < 2)
{
continue;
}
if (sscanf(buff + 2, "%16s", name) < 1)
{
continue;
}
for (p = name; (*p = static_cast(toupper(static_cast(*p)))); p++)
{
}
if (strcmp(name, staname) != 0)
{
continue;
}
/* read blq record */
if (readblqrecord(fp, odisp))
{
fclose(fp);
return 1;
}
}
fclose(fp);
trace(2, "no otl parameters: sta=%s file=%s\n", sta, file);
return 0;
}
/* read earth rotation parameters ----------------------------------------------
* read earth rotation parameters
* args : char *file I IGS ERP file (IGS ERP ver.2)
* erp_t *erp O earth rotation parameters
* return : status (1:ok,0:file open error)
*-----------------------------------------------------------------------------*/
int readerp(const char *file, erp_t *erp)
{
FILE *fp;
erpd_t *erp_data;
double v[14] = {};
char buff[256];
trace(3, "readerp: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
trace(2, "erp file open error: file=%s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10, v + 11, v + 12, v + 13) < 5)
{
continue;
}
if (erp->n >= erp->nmax)
{
erp->nmax = erp->nmax <= 0 ? 128 : erp->nmax * 2;
erp_data = static_cast(realloc(erp->data, sizeof(erpd_t) * erp->nmax));
if (!erp_data)
{
free(erp->data);
erp->data = nullptr;
erp->n = erp->nmax = 0;
fclose(fp);
return 0;
}
erp->data = erp_data;
}
erp->data[erp->n].mjd = v[0];
erp->data[erp->n].xp = v[1] * 1e-6 * AS2R;
erp->data[erp->n].yp = v[2] * 1e-6 * AS2R;
erp->data[erp->n].ut1_utc = v[3] * 1e-7;
erp->data[erp->n].lod = v[4] * 1e-7;
erp->data[erp->n].xpr = v[12] * 1e-6 * AS2R;
erp->data[erp->n++].ypr = v[13] * 1e-6 * AS2R;
}
fclose(fp);
return 1;
}
/* get earth rotation parameter values -----------------------------------------
* get earth rotation parameter values
* args : erp_t *erp I earth rotation parameters
* gtime_t time I time (gpst)
* double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* return : status (1:ok,0:error)
*-----------------------------------------------------------------------------*/
int geterp(const erp_t *erp, gtime_t time, double *erpv)
{
const double ep[] = {2000, 1, 1, 12, 0, 0};
double mjd;
double day;
double a;
int i;
int j;
int k;
trace(4, "geterp:\n");
if (erp->n <= 0)
{
return 0;
}
mjd = 51544.5 + (timediff(gpst2utc(time), epoch2time(ep))) / 86400.0;
if (mjd <= erp->data[0].mjd)
{
day = mjd - erp->data[0].mjd;
erpv[0] = erp->data[0].xp + erp->data[0].xpr * day;
erpv[1] = erp->data[0].yp + erp->data[0].ypr * day;
erpv[2] = erp->data[0].ut1_utc - erp->data[0].lod * day;
erpv[3] = erp->data[0].lod;
return 1;
}
if (mjd >= erp->data[erp->n - 1].mjd)
{
day = mjd - erp->data[erp->n - 1].mjd;
erpv[0] = erp->data[erp->n - 1].xp + erp->data[erp->n - 1].xpr * day;
erpv[1] = erp->data[erp->n - 1].yp + erp->data[erp->n - 1].ypr * day;
erpv[2] = erp->data[erp->n - 1].ut1_utc - erp->data[erp->n - 1].lod * day;
erpv[3] = erp->data[erp->n - 1].lod;
return 1;
}
for (j = 0, k = erp->n - 1; j < k - 1;)
{
i = (j + k) / 2;
if (mjd < erp->data[i].mjd)
{
k = i;
}
else
{
j = i;
}
}
if (erp->data[j].mjd == erp->data[j + 1].mjd)
{
a = 0.5;
}
else
{
a = (mjd - erp->data[j].mjd) / (erp->data[j + 1].mjd - erp->data[j].mjd);
}
erpv[0] = (1.0 - a) * erp->data[j].xp + a * erp->data[j + 1].xp;
erpv[1] = (1.0 - a) * erp->data[j].yp + a * erp->data[j + 1].yp;
erpv[2] = (1.0 - a) * erp->data[j].ut1_utc + a * erp->data[j + 1].ut1_utc;
erpv[3] = (1.0 - a) * erp->data[j].lod + a * erp->data[j + 1].lod;
return 1;
}
/* compare ephemeris ---------------------------------------------------------*/
int cmpeph(const void *p1, const void *p2)
{
const auto *q1 = static_cast(p1);
const auto *q2 = static_cast(p2);
return q1->ttr.time != q2->ttr.time ? static_cast(q1->ttr.time - q2->ttr.time) : (q1->toe.time != q2->toe.time ? static_cast(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
/* sort and unique ephemeris -------------------------------------------------*/
void uniqeph(nav_t *nav)
{
eph_t *nav_eph;
int i;
int j;
trace(3, "uniqeph: n=%d\n", nav->n);
if (nav->n <= 0)
{
return;
}
qsort(nav->eph, nav->n, sizeof(eph_t), cmpeph);
for (i = 1, j = 0; i < nav->n; i++)
{
if (nav->eph[i].sat != nav->eph[j].sat ||
nav->eph[i].iode != nav->eph[j].iode)
{
nav->eph[++j] = nav->eph[i];
}
}
nav->n = j + 1;
if (!(nav_eph = static_cast(realloc(nav->eph, sizeof(eph_t) * nav->n))))
{
trace(1, "uniqeph malloc error n=%d\n", nav->n);
free(nav->eph);
nav->eph = nullptr;
nav->n = nav->nmax = 0;
return;
}
nav->eph = nav_eph;
nav->nmax = nav->n;
trace(4, "uniqeph: n=%d\n", nav->n);
}
/* compare glonass ephemeris -------------------------------------------------*/
int cmpgeph(const void *p1, const void *p2)
{
const auto *q1 = static_cast(p1);
const auto *q2 = static_cast(p2);
return q1->tof.time != q2->tof.time ? static_cast(q1->tof.time - q2->tof.time) : (q1->toe.time != q2->toe.time ? static_cast(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
/* sort and unique glonass ephemeris -----------------------------------------*/
void uniqgeph(nav_t *nav)
{
geph_t *nav_geph;
int i;
int j;
trace(3, "uniqgeph: ng=%d\n", nav->ng);
if (nav->ng <= 0)
{
return;
}
qsort(nav->geph, nav->ng, sizeof(geph_t), cmpgeph);
for (i = j = 0; i < nav->ng; i++)
{
if (nav->geph[i].sat != nav->geph[j].sat ||
nav->geph[i].toe.time != nav->geph[j].toe.time ||
nav->geph[i].svh != nav->geph[j].svh)
{
nav->geph[++j] = nav->geph[i];
}
}
nav->ng = j + 1;
if (!(nav_geph = static_cast(realloc(nav->geph, sizeof(geph_t) * nav->ng))))
{
trace(1, "uniqgeph malloc error ng=%d\n", nav->ng);
free(nav->geph);
nav->geph = nullptr;
nav->ng = nav->ngmax = 0;
return;
}
nav->geph = nav_geph;
nav->ngmax = nav->ng;
trace(4, "uniqgeph: ng=%d\n", nav->ng);
}
/* compare sbas ephemeris ----------------------------------------------------*/
int cmpseph(const void *p1, const void *p2)
{
const auto *q1 = static_cast(p1);
const auto *q2 = static_cast(p2);
return q1->tof.time != q2->tof.time ? static_cast(q1->tof.time - q2->tof.time) : (q1->t0.time != q2->t0.time ? static_cast(q1->t0.time - q2->t0.time) : q1->sat - q2->sat);
}
/* sort and unique sbas ephemeris --------------------------------------------*/
void uniqseph(nav_t *nav)
{
seph_t *nav_seph;
int i;
int j;
trace(3, "uniqseph: ns=%d\n", nav->ns);
if (nav->ns <= 0)
{
return;
}
qsort(nav->seph, nav->ns, sizeof(seph_t), cmpseph);
for (i = j = 0; i < nav->ns; i++)
{
if (nav->seph[i].sat != nav->seph[j].sat ||
nav->seph[i].t0.time != nav->seph[j].t0.time)
{
nav->seph[++j] = nav->seph[i];
}
}
nav->ns = j + 1;
if (!(nav_seph = static_cast(realloc(nav->seph, sizeof(seph_t) * nav->ns))))
{
trace(1, "uniqseph malloc error ns=%d\n", nav->ns);
free(nav->seph);
nav->seph = nullptr;
nav->ns = nav->nsmax = 0;
return;
}
nav->seph = nav_seph;
nav->nsmax = nav->ns;
trace(4, "uniqseph: ns=%d\n", nav->ns);
}
/* unique ephemerides ----------------------------------------------------------
* unique ephemerides in navigation data and update carrier wave length
* args : nav_t *nav IO navigation data
* return : number of epochs
*-----------------------------------------------------------------------------*/
void uniqnav(nav_t *nav)
{
int i;
int j;
trace(3, "uniqnav: neph=%d ngeph=%d nseph=%d\n", nav->n, nav->ng, nav->ns);
/* unique ephemeris */
uniqeph(nav);
uniqgeph(nav);
uniqseph(nav);
/* update carrier wave length */
for (i = 0; i < MAXSAT; i++)
{
for (j = 0; j < NFREQ; j++)
{
nav->lam[i][j] = satwavelen(i + 1, j, nav);
}
}
}
/* compare observation data -------------------------------------------------*/
int cmpobs(const void *p1, const void *p2)
{
const auto *q1 = static_cast(p1);
const auto *q2 = static_cast(p2);
double tt = timediff(q1->time, q2->time);
if (fabs(tt) > DTTOL)
{
return tt < 0 ? -1 : 1;
}
if (q1->rcv != q2->rcv)
{
return static_cast(q1->rcv) - static_cast(q2->rcv);
}
return static_cast(q1->sat) - static_cast(q2->sat);
}
/* sort and unique observation data --------------------------------------------
* sort and unique observation data by time, rcv, sat
* args : obs_t *obs IO observation data
* return : number of epochs
*-----------------------------------------------------------------------------*/
int sortobs(obs_t *obs)
{
int i;
int j;
int n;
trace(3, "sortobs: nobs=%d\n", obs->n);
if (obs->n <= 0)
{
return 0;
}
qsort(obs->data, obs->n, sizeof(obsd_t), cmpobs);
/* delete duplicated data */
for (i = j = 0; i < obs->n; i++)
{
if (obs->data[i].sat != obs->data[j].sat ||
obs->data[i].rcv != obs->data[j].rcv ||
timediff(obs->data[i].time, obs->data[j].time) != 0.0)
{
obs->data[++j] = obs->data[i];
}
}
obs->n = j + 1;
for (i = n = 0; i < obs->n; i = j, n++)
{
for (j = i + 1; j < obs->n; j++)
{
if (timediff(obs->data[j].time, obs->data[i].time) > DTTOL)
{
break;
}
}
}
return n;
}
/* screen by time --------------------------------------------------------------
* screening by time start, time end, and time interval
* args : gtime_t time I time
* gtime_t ts I time start (ts.time==0:no screening by ts)
* gtime_t te I time end (te.time==0:no screening by te)
* double tint I time interval (s) (0.0:no screen by tint)
* return : 1:on condition, 0:not on condition
*-----------------------------------------------------------------------------*/
int screent(gtime_t time, gtime_t ts, gtime_t te, double tint)
{
return (tint <= 0.0 || fmod(time2gpst(time, nullptr) + DTTOL, tint) <= DTTOL * 2.0) &&
(ts.time == 0 || timediff(time, ts) >= -DTTOL) &&
(te.time == 0 || timediff(time, te) < DTTOL);
}
/* read/save navigation data ---------------------------------------------------
* save or load navigation data
* args : char file I file path
* nav_t nav O/I navigation data
* return : status (1:ok,0:no file)
*-----------------------------------------------------------------------------*/
int readnav(const char *file, nav_t *nav)
{
FILE *fp;
eph_t eph0 = {0, 0, 0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, {}, 0.0, 0.0};
geph_t geph0 = {0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {}, {}, {}, 0.0, 0.0, 0.0};
char buff[4096];
char *p;
int32_t toe_time;
int32_t tof_time;
int32_t toc_time;
int32_t ttr_time;
int i;
int sat;
int prn;
trace(3, "loadnav: file=%s\n", file);
if (!(fp = fopen(file, "re")))
{
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "IONUTC", 6))
{
for (i = 0; i < 8; i++)
{
nav->ion_gps[i] = 0.0;
}
for (i = 0; i < 4; i++)
{
nav->utc_gps[i] = 0.0;
}
nav->leaps = 0;
sscanf(buff, "IONUTC,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d",
&nav->ion_gps[0], &nav->ion_gps[1], &nav->ion_gps[2], &nav->ion_gps[3],
&nav->ion_gps[4], &nav->ion_gps[5], &nav->ion_gps[6], &nav->ion_gps[7],
&nav->utc_gps[0], &nav->utc_gps[1], &nav->utc_gps[2], &nav->utc_gps[3],
&nav->leaps);
continue;
}
if ((p = strchr(buff, ',')))
{
*p = '\0';
}
else
{
continue;
}
if (!(sat = satid2no(buff)))
{
continue;
}
if (satsys(sat, &prn) == SYS_GLO)
{
nav->geph[prn - 1] = geph0;
nav->geph[prn - 1].sat = sat;
toe_time = tof_time = 0;
sscanf(p + 1,
"%d,%d,%d,%d,%d,%d,%d,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
"%lf,%lf,%lf,%lf",
&nav->geph[prn - 1].iode, &nav->geph[prn - 1].frq, &nav->geph[prn - 1].svh,
&nav->geph[prn - 1].sva, &nav->geph[prn - 1].age,
&toe_time, &tof_time,
&nav->geph[prn - 1].pos[0], &nav->geph[prn - 1].pos[1], &nav->geph[prn - 1].pos[2],
&nav->geph[prn - 1].vel[0], &nav->geph[prn - 1].vel[1], &nav->geph[prn - 1].vel[2],
&nav->geph[prn - 1].acc[0], &nav->geph[prn - 1].acc[1], &nav->geph[prn - 1].acc[2],
&nav->geph[prn - 1].taun, &nav->geph[prn - 1].gamn, &nav->geph[prn - 1].dtaun);
nav->geph[prn - 1].toe.time = toe_time;
nav->geph[prn - 1].tof.time = tof_time;
}
else
{
nav->eph[sat - 1] = eph0;
nav->eph[sat - 1].sat = sat;
toe_time = toc_time = ttr_time = 0;
sscanf(p + 1,
"%d,%d,%d,%d,%d,%d,%d,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
"%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d,%d",
&nav->eph[sat - 1].iode, &nav->eph[sat - 1].iodc, &nav->eph[sat - 1].sva,
&nav->eph[sat - 1].svh,
&toe_time, &toc_time, &ttr_time,
&nav->eph[sat - 1].A, &nav->eph[sat - 1].e, &nav->eph[sat - 1].i0,
&nav->eph[sat - 1].OMG0, &nav->eph[sat - 1].omg, &nav->eph[sat - 1].M0,
&nav->eph[sat - 1].deln, &nav->eph[sat - 1].OMGd, &nav->eph[sat - 1].idot,
&nav->eph[sat - 1].crc, &nav->eph[sat - 1].crs, &nav->eph[sat - 1].cuc,
&nav->eph[sat - 1].cus, &nav->eph[sat - 1].cic, &nav->eph[sat - 1].cis,
&nav->eph[sat - 1].toes, &nav->eph[sat - 1].fit, &nav->eph[sat - 1].f0,
&nav->eph[sat - 1].f1, &nav->eph[sat - 1].f2, &nav->eph[sat - 1].tgd[0],
&nav->eph[sat - 1].code, &nav->eph[sat - 1].flag);
nav->eph[sat - 1].toe.time = toe_time;
nav->eph[sat - 1].toc.time = toc_time;
nav->eph[sat - 1].ttr.time = ttr_time;
}
}
fclose(fp);
return 1;
}
int savenav(const char *file, const nav_t *nav)
{
FILE *fp;
int i;
char id[32];
trace(3, "savenav: file=%s\n", file);
if (!(fp = fopen(file, "we")))
{
return 0;
}
for (i = 0; i < MAXSAT; i++)
{
if (nav->eph[i].ttr.time == 0)
{
continue;
}
satno2id(nav->eph[i].sat, id);
fprintf(fp,
"%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%d,%d\n",
id, nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].sva,
nav->eph[i].svh, static_cast(nav->eph[i].toe.time),
static_cast(nav->eph[i].toc.time), static_cast(nav->eph[i].ttr.time),
nav->eph[i].A, nav->eph[i].e, nav->eph[i].i0, nav->eph[i].OMG0,
nav->eph[i].omg, nav->eph[i].M0, nav->eph[i].deln, nav->eph[i].OMGd,
nav->eph[i].idot, nav->eph[i].crc, nav->eph[i].crs, nav->eph[i].cuc,
nav->eph[i].cus, nav->eph[i].cic, nav->eph[i].cis, nav->eph[i].toes,
nav->eph[i].fit, nav->eph[i].f0, nav->eph[i].f1, nav->eph[i].f2,
nav->eph[i].tgd[0], nav->eph[i].code, nav->eph[i].flag);
}
for (i = 0; i < MAXPRNGLO; i++)
{
if (nav->geph[i].tof.time == 0)
{
continue;
}
satno2id(nav->geph[i].sat, id);
fprintf(fp,
"%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E\n",
id, nav->geph[i].iode, nav->geph[i].frq, nav->geph[i].svh,
nav->geph[i].sva, nav->geph[i].age, static_cast(nav->geph[i].toe.time),
static_cast(nav->geph[i].tof.time),
nav->geph[i].pos[0], nav->geph[i].pos[1], nav->geph[i].pos[2],
nav->geph[i].vel[0], nav->geph[i].vel[1], nav->geph[i].vel[2],
nav->geph[i].acc[0], nav->geph[i].acc[1], nav->geph[i].acc[2],
nav->geph[i].taun, nav->geph[i].gamn, nav->geph[i].dtaun);
}
fprintf(fp,
"IONUTC,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%d",
nav->ion_gps[0], nav->ion_gps[1], nav->ion_gps[2], nav->ion_gps[3],
nav->ion_gps[4], nav->ion_gps[5], nav->ion_gps[6], nav->ion_gps[7],
nav->utc_gps[0], nav->utc_gps[1], nav->utc_gps[2], nav->utc_gps[3],
nav->leaps);
fclose(fp);
return 1;
}
/* free observation data -------------------------------------------------------
* free memory for observation data
* args : obs_t *obs IO observation data
* return : none
*-----------------------------------------------------------------------------*/
void freeobs(obs_t *obs)
{
free(obs->data);
obs->data = nullptr;
obs->n = obs->nmax = 0;
}
/* free navigation data ---------------------------------------------------------
* free memory for navigation data
* args : nav_t *nav IO navigation data
* int opt I option (one of the following)
* (0x01: gps/qzs ephmeris, 0x02: glonass ephemeris,
* 0x04: sbas ephemeris, 0x08: precise ephemeris,
* 0x10: precise clock 0x20: almanac,
* 0x40: tec data)
* return : none
*-----------------------------------------------------------------------------*/
void freenav(nav_t *nav, int opt)
{
if (opt & 0x01)
{
free(nav->eph);
nav->eph = nullptr;
nav->n = nav->nmax = 0;
}
if (opt & 0x02)
{
free(nav->geph);
nav->geph = nullptr;
nav->ng = nav->ngmax = 0;
}
if (opt & 0x04)
{
free(nav->seph);
nav->seph = nullptr;
nav->ns = nav->nsmax = 0;
}
if (opt & 0x08)
{
free(nav->peph);
nav->peph = nullptr;
nav->ne = nav->nemax = 0;
}
if (opt & 0x10)
{
free(nav->pclk);
nav->pclk = nullptr;
nav->nc = nav->ncmax = 0;
}
if (opt & 0x20)
{
free(nav->alm);
nav->alm = nullptr;
nav->na = nav->namax = 0;
}
if (opt & 0x40)
{
free(nav->tec);
nav->tec = nullptr;
nav->nt = nav->ntmax = 0;
}
if (opt & 0x80)
{
free(nav->fcb);
nav->fcb = nullptr;
nav->nf = nav->nfmax = 0;
}
}
/* debug trace functions -----------------------------------------------------*/
// #ifdef TRACE
//
FILE *fp_trace = nullptr; /* file pointer of trace */
char file_trace[1024]; /* trace file */
static int level_trace = 0; /* level of trace */
unsigned int tick_trace = 0; /* tick time at traceopen (ms) */
gtime_t time_trace = {0, 0.0}; /* time at traceopen */
pthread_mutex_t lock_trace; /* lock for trace */
void traceswap()
{
gtime_t time = utc2gpst(timeget());
char path[1024];
rtk_lock(&lock_trace);
if (static_cast(time2gpst(time, nullptr) / INT_SWAP_TRAC) ==
static_cast(time2gpst(time_trace, nullptr) / INT_SWAP_TRAC))
{
rtk_unlock(&lock_trace);
return;
}
time_trace = time;
if (!reppath(file_trace, path, time, "", ""))
{
rtk_unlock(&lock_trace);
return;
}
if (fp_trace)
{
fclose(fp_trace);
}
if (!(fp_trace = fopen(path, "we")))
{
fp_trace = stderr;
}
rtk_unlock(&lock_trace);
}
void traceopen(const char *file)
{
gtime_t time = utc2gpst(timeget());
char path[1024];
reppath(file, path, time, "", "");
if (!*path || !(fp_trace = fopen(path, "we")))
{
fp_trace = stderr;
}
if (strlen(file) < 1025)
{
std::strncpy(file_trace, file, 1024);
file_trace[1023] = '\0';
}
else
{
trace(1, "file array is too long");
}
tick_trace = tickget();
time_trace = time;
initlock(&lock_trace);
}
void traceclose()
{
if (fp_trace && fp_trace != stderr)
{
fclose(fp_trace);
}
fp_trace = nullptr;
file_trace[0] = '\0';
}
void tracelevel(int level)
{
level_trace = level;
}
// extern void trace(int level, const char *format, ...)
// {
// va_list ap;
//
// /* print error message to stderr */
// if (level <= 1) {
// va_start(ap,format); vfprintf(stderr,format,ap); va_end(ap);
// }
// if (!fp_trace||level>level_trace) return;
// traceswap();
// fprintf(fp_trace,"%d ",level);
// va_start(ap,format); vfprintf(fp_trace,format,ap); va_end(ap);
// fflush(fp_trace);
// }
void tracet(int level, const char *format, ...)
{
va_list ap;
if (!fp_trace || level > level_trace)
{
return;
}
traceswap();
fprintf(fp_trace, "%d %9.3f: ", level, (tickget() - tick_trace) / 1000.0);
va_start(ap, format);
vfprintf(fp_trace, format, ap);
va_end(ap);
fflush(fp_trace);
}
void tracemat(int level, const double *A, int n, int m, int p, int q)
{
std::string buffer_;
matsprint(A, n, m, p, q, buffer_);
VLOG(level) << buffer_;
}
void traceobs(int level __attribute__((unused)), const obsd_t *obs __attribute__((unused)), int n __attribute__((unused)))
{
// char str[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;ilevel_trace) return;
// for (i=0;in;i++) {
// time2str(nav->eph[i].toe,s1,0);
// time2str(nav->eph[i].ttr,s2,0);
// satno2id(nav->eph[i].sat,id);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %3d %3d %02x\n",i+1,
// id,s1,s2,nav->eph[i].iode,nav->eph[i].iodc,nav->eph[i].svh);
// }
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gps[0],
// nav->ion_gps[1],nav->ion_gps[2],nav->ion_gps[3]);
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gps[4],
// nav->ion_gps[5],nav->ion_gps[6],nav->ion_gps[7]);
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gal[0],
// nav->ion_gal[1],nav->ion_gal[2],nav->ion_gal[3]);
// }
// extern void tracegnav(int level, const nav_t *nav)
// {
// char s1[64],s2[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;ing;i++) {
// time2str(nav->geph[i].toe,s1,0);
// time2str(nav->geph[i].tof,s2,0);
// satno2id(nav->geph[i].sat,id);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d %8.3f\n",i+1,
// id,s1,s2,nav->geph[i].frq,nav->geph[i].svh,nav->geph[i].taun*1e6);
// }
// }
// extern void tracehnav(int level, const nav_t *nav)
// {
// char s1[64],s2[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;ins;i++) {
// time2str(nav->seph[i].t0,s1,0);
// time2str(nav->seph[i].tof,s2,0);
// satno2id(nav->seph[i].sat,id);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d\n",i+1,
// id,s1,s2,nav->seph[i].svh,nav->seph[i].sva);
// }
// }
// extern void tracepeph(int level, const nav_t *nav)
// {
// char s[64],id[16];
// int i,j;
//
// if (!fp_trace||level>level_trace) return;
//
// for (i=0;ine;i++) {
// time2str(nav->peph[i].time,s,0);
// for (j=0;jpeph[i].index,id,
// nav->peph[i].pos[j][0],nav->peph[i].pos[j][1],
// nav->peph[i].pos[j][2],nav->peph[i].pos[j][3]*1e9,
// nav->peph[i].std[j][0],nav->peph[i].std[j][1],
// nav->peph[i].std[j][2],nav->peph[i].std[j][3]*1e9);
// }
// }
// }
// extern void tracepclk(int level, const nav_t *nav)
// {
// char s[64],id[16];
// int i,j;
//
// if (!fp_trace||level>level_trace) return;
//
// for (i=0;inc;i++) {
// time2str(nav->pclk[i].time,s,0);
// for (j=0;jpclk[i].index,id,
// nav->pclk[i].clk[j][0]*1e9,nav->pclk[i].std[j][0]*1e9);
// }
// }
// }
// extern void traceb(int level, const unsigned char *p, int n)
// {
// int i;
// if (!fp_trace||level>level_trace) return;
// for (i=0;i:error)
*-----------------------------------------------------------------------------*/
int execcmd(const char *cmd)
{
trace(3, "execcmd: cmd=%s\n", cmd);
return system(cmd);
}
/* create directory ------------------------------------------------------------
* create directory if not exist
* args : char *path I file path to be saved
* return : none
* notes : not recursive. only one level
*-----------------------------------------------------------------------------*/
void createdir(const char *path)
{
char buff[1024];
char *p;
// tracet(3, "createdir: path=%s\n", path);
if (strlen(path) < 1025)
{
std::strncpy(buff, path, 1024);
buff[1023] = '\0';
}
else
{
trace(1, "path is too long");
}
if (!(p = strrchr(buff, FILEPATHSEP)))
{
return;
}
*p = '\0';
if (mkdir(buff, 0777) != 0)
{
trace(1, "Error creating folder");
}
}
/* replace string ------------------------------------------------------------*/
int repstr(char *str, const char *pat, const char *rep)
{
int len = static_cast(strlen(pat));
char buff[1024];
char *p;
char *q;
char *r;
for (p = str, r = buff; *p; p = q + len)
{
if (!(q = strstr(p, pat)))
{
break;
}
strncpy(r, p, q - p);
r += q - p;
r += std::snprintf(r, sizeof(buff), "%s", rep);
}
if (p <= str)
{
return 0;
}
if (strlen(p) < 1025)
{
std::strncpy(r, p, 1024);
r[1023] = '\0';
}
else
{
trace(1, "pat array is too long");
}
std::strncpy(str, buff, 1024);
return 1;
}
/* replace keywords in file path -----------------------------------------------
* replace keywords in file path with date, time, rover and base station id
* args : char *path I file path (see below)
* char *rpath O file path in which keywords replaced (see below)
* gtime_t time I time (gpst) (time.time==0: not replaced)
* char *rov I rover id string ("": not replaced)
* char *base I base station id string ("": not replaced)
* return : status (1:keywords replaced, 0:no valid keyword in the path,
* -1:no valid time)
* notes : the following keywords in path are replaced by date, time and name
* %Y -> yyyy : year (4 digits) (1900-2099)
* %y -> yy : year (2 digits) (00-99)
* %m -> mm : month (01-12)
* %d -> dd : day of month (01-31)
* %h -> hh : hours (00-23)
* %M -> mm : minutes (00-59)
* %S -> ss : seconds (00-59)
* %n -> ddd : day of year (001-366)
* %W -> wwww : gps week (0001-9999)
* %D -> d : day of gps week (0-6)
* %H -> h : hour code (a=0,b=1,c=2,...,x=23)
* %ha-> hh : 3 hours (00,03,06,...,21)
* %hb-> hh : 6 hours (00,06,12,18)
* %hc-> hh : 12 hours (00,12)
* %t -> mm : 15 minutes (00,15,30,45)
* %r -> rrrr : rover id
* %b -> bbbb : base station id
*-----------------------------------------------------------------------------*/
int reppath(const char *path, char *rpath, gtime_t time, const char *rov,
const char *base)
{
double ep[6];
double ep0[6] = {2000, 1, 1, 0, 0, 0};
int week;
int dow;
int doy;
int stat = 0;
char rep[64];
std::strncpy(rpath, path, 1024);
if (!strstr(rpath, "%"))
{
return 0;
}
if (*rov)
{
stat |= repstr(rpath, "%r", rov);
}
if (*base)
{
stat |= repstr(rpath, "%b", base);
}
if (time.time != 0)
{
time2epoch(time, ep);
ep0[0] = ep[0];
dow = static_cast(floor(time2gpst(time, &week) / 86400.0));
doy = static_cast(floor(timediff(time, epoch2time(ep0)) / 86400.0)) + 1;
std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[3]) / 3) * 3);
stat |= repstr(rpath, "%ha", rep);
std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[3]) / 6) * 6);
stat |= repstr(rpath, "%hb", rep);
std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[3]) / 12) * 12);
stat |= repstr(rpath, "%hc", rep);
std::snprintf(rep, sizeof(rep), "%04.0f", ep[0]);
stat |= repstr(rpath, "%Y", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", fmod(ep[0], 100.0));
stat |= repstr(rpath, "%y", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[1]);
stat |= repstr(rpath, "%m", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[2]);
stat |= repstr(rpath, "%d", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[3]);
stat |= repstr(rpath, "%h", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", ep[4]);
stat |= repstr(rpath, "%M", rep);
std::snprintf(rep, sizeof(rep), "%02.0f", floor(ep[5]));
stat |= repstr(rpath, "%S", rep);
std::snprintf(rep, sizeof(rep), "%03d", doy);
stat |= repstr(rpath, "%n", rep);
std::snprintf(rep, sizeof(rep), "%04d", week);
stat |= repstr(rpath, "%W", rep);
std::snprintf(rep, sizeof(rep), "%d", dow);
stat |= repstr(rpath, "%D", rep);
std::snprintf(rep, sizeof(rep), "%c", 'a' + static_cast(ep[3]));
stat |= repstr(rpath, "%H", rep);
std::snprintf(rep, sizeof(rep), "%02d", (static_cast(ep[4]) / 15) * 15);
stat |= repstr(rpath, "%t", rep);
}
else if (strstr(rpath, "%ha") || strstr(rpath, "%hb") || strstr(rpath, "%hc") ||
strstr(rpath, "%Y") || strstr(rpath, "%y") || strstr(rpath, "%m") ||
strstr(rpath, "%d") || strstr(rpath, "%h") || strstr(rpath, "%M") ||
strstr(rpath, "%S") || strstr(rpath, "%n") || strstr(rpath, "%W") ||
strstr(rpath, "%D") || strstr(rpath, "%H") || strstr(rpath, "%t"))
{
return -1; /* no valid time */
}
return stat;
}
/* replace keywords in file path and generate multiple paths -------------------
* replace keywords in file path with date, time, rover and base station id
* generate multiple keywords-replaced paths
* args : char *path I file path (see below)
* char *rpath[] O file paths in which keywords replaced
* int nmax I max number of output file paths
* gtime_t ts I time start (gpst)
* gtime_t te I time end (gpst)
* char *rov I rover id string ("": not replaced)
* char *base I base station id string ("": not replaced)
* return : number of replaced file paths
* notes : see reppath() for replacements of keywords.
* minimum interval of time replaced is 900s.
*-----------------------------------------------------------------------------*/
int reppaths(const char *path, char *rpath[], int nmax, gtime_t ts,
gtime_t te, const char *rov, const char *base)
{
gtime_t time;
double tow;
double tint = 86400.0;
int i;
int n = 0;
int week;
trace(3, "reppaths: path =%s nmax=%d rov=%s base=%s\n", path, nmax, rov, base);
if (ts.time == 0 || te.time == 0 || timediff(ts, te) > 0.0)
{
return 0;
}
if (strstr(path, "%S") || strstr(path, "%M") || strstr(path, "%t"))
{
tint = 900.0;
}
else if (strstr(path, "%h") || strstr(path, "%H"))
{
tint = 3600.0;
}
tow = time2gpst(ts, &week);
time = gpst2time(week, floor(tow / tint) * tint);
while (timediff(time, te) <= 0.0 && n < nmax)
{
reppath(path, rpath[n], time, rov, base);
if (n == 0 || strcmp(rpath[n], rpath[n - 1]) != 0)
{
n++;
}
time = timeadd(time, tint);
}
for (i = 0; i < n; i++)
{
trace(3, "reppaths: rpath=%s\n", rpath[i]);
}
return n;
}
/* satellite carrier wave length -----------------------------------------------
* get satellite carrier wave lengths
* args : int sat I satellite number
* int frq I frequency index (0:L1,1:L2,2:L5/3,...)
* nav_t *nav I navigation messages
* return : carrier wave length (m) (0.0: error)
*-----------------------------------------------------------------------------*/
double satwavelen(int sat, int frq, const nav_t *nav)
{
const double freq_glo[] = {FREQ1_GLO, FREQ2_GLO};
const double dfrq_glo[] = {DFRQ1_GLO, DFRQ2_GLO};
int i;
int sys = satsys(sat, nullptr);
if (sys == SYS_GLO)
{
if (0 <= frq && frq <= 1)
{
for (i = 0; i < nav->ng; i++)
{
if (nav->geph[i].sat != sat)
{
continue;
}
return SPEED_OF_LIGHT_M_S / (freq_glo[frq] + dfrq_glo[frq] * nav->geph[i].frq);
}
}
else if (frq == 2)
{ /* L3 */
return SPEED_OF_LIGHT_M_S / FREQ3_GLO;
}
}
else if (sys == SYS_BDS)
{
if (frq == 0)
{
return SPEED_OF_LIGHT_M_S / FREQ1_BDS; /* B1 */
}
if (frq == 1)
{
return SPEED_OF_LIGHT_M_S / FREQ2_BDS; /* B2 */
}
if (frq == 2)
{
return SPEED_OF_LIGHT_M_S / FREQ3_BDS; /* B3 */
}
}
else
{
if (frq == 0)
{
return SPEED_OF_LIGHT_M_S / FREQ1; /* L1/E1 */
}
if (frq == 1)
{
return SPEED_OF_LIGHT_M_S / FREQ2; /* L2 */
}
if (frq == 2)
{
return SPEED_OF_LIGHT_M_S / FREQ5; /* L5/E5a */
}
if (frq == 3)
{
return SPEED_OF_LIGHT_M_S / FREQ6; /* L6/LEX */
}
if (frq == 4)
{
return SPEED_OF_LIGHT_M_S / FREQ7; /* E5b */
}
if (frq == 5)
{
return SPEED_OF_LIGHT_M_S / FREQ8; /* E5a+b */
}
if (frq == 6)
{
return SPEED_OF_LIGHT_M_S / FREQ9; /* S */
}
}
return 0.0;
}
/* geometric distance ----------------------------------------------------------
* compute geometric distance and receiver-to-satellite unit vector
* args : double *rs I satellilte position (ecef at transmission) (m)
* double *rr I receiver position (ecef at reception) (m)
* double *e O line-of-sight vector (ecef)
* return : geometric distance (m) (0>:error/no satellite position)
* notes : distance includes sagnac effect correction
*-----------------------------------------------------------------------------*/
double geodist(const double *rs, const double *rr, double *e)
{
double r;
int i;
if (norm_rtk(rs, 3) < RE_WGS84)
{
return -1.0;
}
for (i = 0; i < 3; i++)
{
e[i] = rs[i] - rr[i];
}
r = norm_rtk(e, 3);
for (i = 0; i < 3; i++)
{
e[i] /= r;
}
return r + GNSS_OMEGA_EARTH_DOT * (rs[0] * rr[1] - rs[1] * rr[0]) / SPEED_OF_LIGHT_M_S;
}
/* satellite azimuth/elevation angle -------------------------------------------
* compute satellite azimuth/elevation angle
* args : double *pos I geodetic position {lat,lon,h} (rad,m)
* double *e I receiver-to-satellilte unit vector (ecef)
* double *azel IO azimuth/elevation {az,el} (rad) (NULL: no output)
* (0.0<=azel[0]<2*pi,-pi/2<=azel[1]<=pi/2)
* return : elevation angle (rad)
*-----------------------------------------------------------------------------*/
double satazel(const double *pos, const double *e, double *azel)
{
double az = 0.0;
double el = GNSS_PI / 2.0;
double enu[3];
if (pos[2] > -RE_WGS84)
{
ecef2enu(pos, e, enu);
az = dot(enu, enu, 2) < 1e-12 ? 0.0 : atan2(enu[0], enu[1]);
if (az < 0.0)
{
az += 2 * GNSS_PI;
}
el = asin(enu[2]);
}
if (azel)
{
azel[0] = az;
azel[1] = el;
}
return el;
}
/* compute dops ----------------------------------------------------------------
* compute DOP (dilution of precision)
* args : int ns I number of satellites
* double *azel I satellite azimuth/elevation angle (rad)
* double elmin I elevation cutoff angle (rad)
* double *dop O DOPs {GDOP,PDOP,HDOP,VDOP}
* return : none
* notes : dop[0]-[3] return 0 in case of dop computation error
*-----------------------------------------------------------------------------*/
void dops(int ns, const double *azel, double elmin, double *dop)
{
double H[4 * MAXSAT];
double Q[16];
double cosel;
double sinel;
int i;
int n;
for (i = 0; i < 4; i++)
{
dop[i] = 0.0;
}
for (i = n = 0; i < ns && i < MAXSAT; i++)
{
if (azel[1 + i * 2] < elmin || azel[1 + i * 2] <= 0.0)
{
continue;
}
cosel = cos(azel[1 + i * 2]);
sinel = sin(azel[1 + i * 2]);
H[4 * n] = cosel * sin(azel[i * 2]);
H[1 + 4 * n] = cosel * cos(azel[i * 2]);
H[2 + 4 * n] = sinel;
H[3 + 4 * n++] = 1.0;
}
if (n < 4)
{
return;
}
matmul("NT", 4, 4, n, 1.0, H, H, 0.0, Q);
if (!matinv(Q, 4))
{
dop[0] = std::sqrt(Q[0] + Q[5] + Q[10] + Q[15]); /* GDOP */
dop[1] = std::sqrt(Q[0] + Q[5] + Q[10]); /* PDOP */
dop[2] = std::sqrt(Q[0] + Q[5]); /* HDOP */
dop[3] = std::sqrt(Q[10]); /* VDOP */
}
}
/* ionosphere model ------------------------------------------------------------
* compute ionospheric delay by broadcast ionosphere model (klobuchar model)
* args : gtime_t t I time (gpst)
* double *ion I iono model parameters {a0,a1,a2,a3,b0,b1,b2,b3}
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* return : ionospheric delay (L1) (m)
*-----------------------------------------------------------------------------*/
double ionmodel(gtime_t t, const double *ion, const double *pos,
const double *azel)
{
const double ion_default[] = {/* 2004/1/1 */
0.1118E-07, -0.7451e-08, -0.5961e-07, 0.1192E-06,
0.1167E+06, -0.2294E+06, -0.1311e+06, 0.1049E+07};
double tt;
double f;
double psi;
double phi;
double lam;
double amp;
double per;
double x;
int week;
if (pos[2] < -1e3 || azel[1] <= 0)
{
return 0.0;
}
if (norm_rtk(ion, 8) <= 0.0)
{
ion = ion_default;
}
/* earth centered angle (semi-circle) */
psi = 0.0137 / (azel[1] / GNSS_PI + 0.11) - 0.022;
/* subionospheric latitude/longitude (semi-circle) */
phi = pos[0] / GNSS_PI + psi * cos(azel[0]);
if (phi > 0.416)
{
phi = 0.416;
}
else if (phi < -0.416)
{
phi = -0.416;
}
lam = pos[1] / GNSS_PI + psi * sin(azel[0]) / cos(phi * GNSS_PI);
/* geomagnetic latitude (semi-circle) */
phi += 0.064 * cos((lam - 1.617) * GNSS_PI);
/* local time (s) */
tt = 43200.0 * lam + time2gpst(t, &week);
tt -= floor(tt / 86400.0) * 86400.0; /* 0 <= tt<86400 */
/* slant factor */
f = 1.0 + 16.0 * pow(0.53 - azel[1] / GNSS_PI, 3.0);
/* ionospheric delay */
amp = ion[0] + phi * (ion[1] + phi * (ion[2] + phi * ion[3]));
per = ion[4] + phi * (ion[5] + phi * (ion[6] + phi * ion[7]));
amp = amp < 0.0 ? 0.0 : amp;
per = per < 72000.0 ? 72000.0 : per;
x = 2.0 * GNSS_PI * (tt - 50400.0) / per;
return SPEED_OF_LIGHT_M_S * f * (fabs(x) < 1.57 ? 5E-9 + amp * (1.0 + x * x * (-0.5 + x * x / 24.0)) : 5E-9);
}
/* ionosphere mapping function -------------------------------------------------
* compute ionospheric delay mapping function by single layer model
* args : double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* return : ionospheric mapping function
*-----------------------------------------------------------------------------*/
double ionmapf(const double *pos, const double *azel)
{
if (pos[2] >= HION)
{
return 1.0;
}
return 1.0 / cos(asin((RE_WGS84 + pos[2]) / (RE_WGS84 + HION) * sin(GNSS_PI / 2.0 - azel[1])));
}
/* ionospheric pierce point position -------------------------------------------
* compute ionospheric pierce point (ipp) position and slant factor
* args : double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double re I earth radius (km)
* double hion I altitude of ionosphere (km)
* double *posp O pierce point position {lat,lon,h} (rad,m)
* return : slant factor
* notes : see ref [2], only valid on the earth surface
* fixing bug on ref [2] A.4.4.10.1 A-22,23
*-----------------------------------------------------------------------------*/
double ionppp(const double *pos, const double *azel, double re,
double hion, double *posp)
{
double cosaz;
double rp;
double ap;
double sinap;
double tanap;
rp = re / (re + hion) * cos(azel[1]);
ap = GNSS_PI / 2.0 - azel[1] - asin(rp);
sinap = sin(ap);
tanap = tan(ap);
cosaz = cos(azel[0]);
posp[0] = asin(sin(pos[0]) * cos(ap) + cos(pos[0]) * sinap * cosaz);
if ((pos[0] > 70.0 * D2R && tanap * cosaz > tan(GNSS_PI / 2.0 - pos[0])) ||
(pos[0] < -70.0 * D2R && -tanap * cosaz > tan(GNSS_PI / 2.0 + pos[0])))
{
posp[1] = pos[1] + GNSS_PI - asin(sinap * sin(azel[0]) / cos(posp[0]));
}
else
{
posp[1] = pos[1] + asin(sinap * sin(azel[0]) / cos(posp[0]));
}
return 1.0 / sqrt(1.0 - rp * rp);
}
/* troposphere model -----------------------------------------------------------
* compute tropospheric delay by standard atmosphere and saastamoinen model
* args : gtime_t time I time
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double humi I relative humidity
* return : tropospheric delay (m)
*-----------------------------------------------------------------------------*/
double tropmodel(gtime_t time __attribute__((unused)), const double *pos, const double *azel,
double humi)
{
const double temp0 = 15.0; /* temparature at sea level */
double hgt;
double pres;
double temp;
double e;
double z;
double trph;
double trpw;
if (pos[2] < -100.0 || 1e4 < pos[2] || azel[1] <= 0)
{
return 0.0;
}
/* standard atmosphere */
hgt = pos[2] < 0.0 ? 0.0 : pos[2];
pres = 1013.25 * pow(1.0 - 2.2557E-5 * hgt, 5.2568);
temp = temp0 - 6.5E-3 * hgt + 273.16;
e = 6.108 * humi * exp((17.15 * temp - 4684.0) / (temp - 38.45));
/* saastamoninen model */
z = GNSS_PI / 2.0 - azel[1];
trph = 0.0022768 * pres / (1.0 - 0.00266 * cos(2.0 * pos[0]) - 0.00028 * hgt / 1e3) / cos(z);
trpw = 0.002277 * (1255.0 / temp + 0.05) * e / cos(z);
return trph + trpw;
}
#ifndef IERS_MODEL
double interpc(const double coef[], double lat)
{
int i = static_cast(lat / 15.0);
if (i < 1)
{
return coef[0];
}
if (i > 4)
{
return coef[4];
}
return coef[i - 1] * (1.0 - lat / 15.0 + i) + coef[i] * (lat / 15.0 - i);
}
double mapf(double el, double a, double b, double c)
{
double sinel = sin(el);
return (1.0 + a / (1.0 + b / (1.0 + c))) / (sinel + (a / (sinel + b / (sinel + c))));
}
double nmf(gtime_t time, const double pos[], const double azel[],
double *mapfw)
{
/* ref [5] table 3 */
/* hydro-ave-a,b,c, hydro-amp-a,b,c, wet-a,b,c at latitude 15,30,45,60,75 */
const double coef[][5] = {
{1.2769934E-3, 1.2683230E-3, 1.2465397E-3, 1.2196049E-3, 1.2045996E-3},
{2.9153695E-3, 2.9152299E-3, 2.9288445E-3, 2.9022565E-3, 2.9024912E-3},
{62.610505E-3, 62.837393E-3, 63.721774E-3, 63.824265E-3, 64.258455E-3},
{0.0000000E-0, 1.2709626E-5, 2.6523662E-5, 3.4000452E-5, 4.1202191e-5},
{0.0000000E-0, 2.1414979E-5, 3.0160779E-5, 7.2562722E-5, 11.723375E-5},
{0.0000000E-0, 9.0128400E-5, 4.3497037E-5, 84.795348E-5, 170.37206E-5},
{5.8021897E-4, 5.6794847E-4, 5.8118019E-4, 5.9727542E-4, 6.1641693E-4},
{1.4275268E-3, 1.5138625E-3, 1.4572752E-3, 1.5007428E-3, 1.7599082E-3},
{4.3472961e-2, 4.6729510E-2, 4.3908931e-2, 4.4626982E-2, 5.4736038E-2}};
const double aht[] = {2.53E-5, 5.49E-3, 1.14E-3}; /* height correction */
double y;
double cosy;
double ah[3];
double aw[3];
double dm;
double el = azel[1];
double lat = pos[0] * R2D;
double hgt = pos[2];
int i;
if (el <= 0.0)
{
if (mapfw)
{
*mapfw = 0.0;
}
return 0.0;
}
/* year from doy 28, added half a year for southern latitudes */
y = (time2doy(time) - 28.0) / 365.25 + (lat < 0.0 ? 0.5 : 0.0);
cosy = cos(2.0 * GNSS_PI * y);
lat = fabs(lat);
for (i = 0; i < 3; i++)
{
ah[i] = interpc(coef[i], lat) - interpc(coef[i + 3], lat) * cosy;
aw[i] = interpc(coef[i + 6], lat);
}
/* ellipsoidal height is used instead of height above sea level */
dm = (1.0 / sin(el) - mapf(el, aht[0], aht[1], aht[2])) * hgt / 1e3;
if (mapfw)
{
*mapfw = mapf(el, aw[0], aw[1], aw[2]);
}
return mapf(el, ah[0], ah[1], ah[2]) + dm;
}
#endif /* !IERS_MODEL */
/* troposphere mapping function ------------------------------------------------
* compute tropospheric mapping function by NMF
* args : gtime_t t I time
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double *mapfw IO wet mapping function (NULL: not output)
* return : dry mapping function
* note : see ref [5] (NMF) and [9] (GMF)
* original JGR paper of [5] has bugs in eq.(4) and (5). the corrected
* paper is obtained from:
* ftp://web.haystack.edu/pub/aen/nmf/NMF_JGR.pdf
*-----------------------------------------------------------------------------*/
double tropmapf(gtime_t time, const double pos[], const double azel[],
double *mapfw)
{
#ifdef IERS_MODEL
const double ep[] = {2000, 1, 1, 12, 0, 0};
double mjd, lat, lon, hgt, zd, gmfh, gmfw;
#endif
trace(4, "tropmapf: pos=%10.6f %11.6f %6.1f azel=%5.1f %4.1f\n",
pos[0] * R2D, pos[1] * R2D, pos[2], azel[0] * R2D, azel[1] * R2D);
if (pos[2] < -1000.0 || pos[2] > 20000.0)
{
if (mapfw)
{
*mapfw = 0.0;
}
return 0.0;
}
#ifdef IERS_MODEL
mjd = 51544.5 + (timediff(time, epoch2time(ep))) / 86400.0;
lat = pos[0];
lon = pos[1];
hgt = pos[2] - geoidh(pos); /* height in m (mean sea level) */
zd = GNSS_PI / 2.0 - azel[1];
/* call GMF */
gmf_(&mjd, &lat, &lon, &hgt, &zd, &gmfh, &gmfw);
if (mapfw) *mapfw = gmfw;
return gmfh;
#else
return nmf(time, pos, azel, mapfw); /* NMF */
#endif
}
/* interpolate antenna phase center variation --------------------------------*/
double interpvar(double ang, const double *var)
{
double a = ang / 5.0; /* ang=0-90 */
int i = static_cast(a);
if (i < 0)
{
return var[0];
}
if (i >= 18)
{
return var[18];
}
return var[i] * (1.0 - a + i) + var[i + 1] * (a - i);
}
/* receiver antenna model ------------------------------------------------------
* compute antenna offset by antenna phase center parameters
* args : pcv_t *pcv I antenna phase center parameters
* double *azel I azimuth/elevation for receiver {az,el} (rad)
* int opt I option (0:only offset,1:offset+pcv)
* double *dant O range offsets for each frequency (m)
* return : none
* notes : current version does not support azimuth dependent terms
*-----------------------------------------------------------------------------*/
void antmodel(const pcv_t *pcv, const double *del, const double *azel,
int opt, double *dant)
{
double e[3];
double off[3];
double cosel = cos(azel[1]);
int i;
int j;
trace(4, "antmodel: azel=%6.1f %4.1f opt=%d\n", azel[0] * R2D, azel[1] * R2D, opt);
e[0] = sin(azel[0]) * cosel;
e[1] = cos(azel[0]) * cosel;
e[2] = sin(azel[1]);
for (i = 0; i < NFREQ; i++)
{
for (j = 0; j < 3; j++)
{
off[j] = pcv->off[i][j] + del[j];
}
dant[i] = -dot(off, e, 3) + (opt ? interpvar(90.0 - azel[1] * R2D, pcv->var[i]) : 0.0);
}
trace(5, "antmodel: dant=%6.3f %6.3f\n", dant[0], dant[1]);
}
/* satellite antenna model ------------------------------------------------------
* compute satellite antenna phase center parameters
* args : pcv_t *pcv I antenna phase center parameters
* double nadir I nadir angle for satellite (rad)
* double *dant O range offsets for each frequency (m)
* return : none
*-----------------------------------------------------------------------------*/
void antmodel_s(const pcv_t *pcv, double nadir, double *dant)
{
int i;
trace(4, "antmodel_s: nadir=%6.1f\n", nadir * R2D);
for (i = 0; i < NFREQ; i++)
{
dant[i] = interpvar(nadir * R2D * 5.0, pcv->var[i]);
}
trace(5, "antmodel_s: dant=%6.3f %6.3f\n", dant[0], dant[1]);
}
/* sun and moon position in eci (ref [4] 5.1.1, 5.2.1) -----------------------*/
void sunmoonpos_eci(gtime_t tut, double *rsun, double *rmoon)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
double t;
double f[5];
double eps;
double Ms;
double ls;
double rs;
double lm;
double pm;
double rm;
double sine;
double cose;
double sinp;
double cosp;
double sinl;
double cosl;
trace(4, "sunmoonpos_eci: tut=%s\n", time_str(tut, 3));
t = timediff(tut, epoch2time(ep2000)) / 86400.0 / 36525.0;
/* astronomical arguments */
ast_args(t, f);
/* obliquity of the ecliptic */
eps = 23.439291 - 0.0130042 * t;
sine = sin(eps * D2R);
cose = cos(eps * D2R);
/* sun position in eci */
if (rsun)
{
Ms = 357.5277233 + 35999.05034 * t;
ls = 280.460 + 36000.770 * t + 1.914666471 * sin(Ms * D2R) + 0.019994643 * sin(2.0 * Ms * D2R);
rs = AU * (1.000140612 - 0.016708617 * cos(Ms * D2R) - 0.000139589 * cos(2.0 * Ms * D2R));
sinl = sin(ls * D2R);
cosl = cos(ls * D2R);
rsun[0] = rs * cosl;
rsun[1] = rs * cose * sinl;
rsun[2] = rs * sine * sinl;
trace(5, "rsun =%.3f %.3f %.3f\n", rsun[0], rsun[1], rsun[2]);
}
/* moon position in eci */
if (rmoon)
{
lm = 218.32 + 481267.883 * t + 6.29 * sin(f[0]) - 1.27 * sin(f[0] - 2.0 * f[3]) +
0.66 * sin(2.0 * f[3]) + 0.21 * sin(2.0 * f[0]) - 0.19 * sin(f[1]) - 0.11 * sin(2.0 * f[2]);
pm = 5.13 * sin(f[2]) + 0.28 * sin(f[0] + f[2]) - 0.28 * sin(f[2] - f[0]) -
0.17 * sin(f[2] - 2.0 * f[3]);
rm = RE_WGS84 / sin((0.9508 + 0.0518 * cos(f[0]) + 0.0095 * cos(f[0] - 2.0 * f[3]) +
0.0078 * cos(2.0 * f[3]) + 0.0028 * cos(2.0 * f[0])) *
D2R);
sinl = sin(lm * D2R);
cosl = cos(lm * D2R);
sinp = sin(pm * D2R);
cosp = cos(pm * D2R);
rmoon[0] = rm * cosp * cosl;
rmoon[1] = rm * (cose * cosp * sinl - sine * sinp);
rmoon[2] = rm * (sine * cosp * sinl + cose * sinp);
trace(5, "rmoon=%.3f %.3f %.3f\n", rmoon[0], rmoon[1], rmoon[2]);
}
}
/* sun and moon position -------------------------------------------------------
* get sun and moon position in ecef
* args : gtime_t tut I time in ut1
* double *erpv I erp value {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* double *rsun IO sun position in ecef (m) (NULL: not output)
* double *rmoon IO moon position in ecef (m) (NULL: not output)
* double *gmst O gmst (rad)
* return : none
*-----------------------------------------------------------------------------*/
void sunmoonpos(gtime_t tutc, const double *erpv, double *rsun,
double *rmoon, double *gmst)
{
gtime_t tut;
double rs[3];
double rm[3];
double U[9];
double gmst_;
trace(4, "sunmoonpos: tutc=%s\n", time_str(tutc, 3));
tut = timeadd(tutc, erpv[2]); /* utc -> ut1 */
/* sun and moon position in eci */
sunmoonpos_eci(tut, rsun ? rs : nullptr, rmoon ? rm : nullptr);
/* eci to ecef transformation matrix */
eci2ecef(tutc, erpv, U, &gmst_);
/* sun and moon position in ecef */
if (rsun)
{
matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun);
}
if (rmoon)
{
matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon);
}
if (gmst)
{
*gmst = gmst_;
}
}
/* carrier smoothing -----------------------------------------------------------
* carrier smoothing by Hatch filter
* args : obs_t *obs IO raw observation data/smoothed observation data
* int ns I smoothing window size (epochs)
* return : none
*-----------------------------------------------------------------------------*/
void csmooth(obs_t *obs, int ns)
{
double Ps[2][MAXSAT][NFREQ] = {};
double Lp[2][MAXSAT][NFREQ] = {};
double dcp;
int i;
int j;
int s;
int r;
int n[2][MAXSAT][NFREQ] = {};
obsd_t *p;
trace(3, "csmooth: nobs=%d,ns=%d\n", obs->n, ns);
for (i = 0; i < obs->n; i++)
{
p = &obs->data[i];
s = p->sat;
r = p->rcv;
for (j = 0; j < NFREQ; j++)
{
if (s <= 0 || MAXSAT < s || r <= 0 || 2 < r)
{
continue;
}
if (p->P[j] == 0.0 || p->L[j] == 0.0)
{
continue;
}
if (p->LLI[j])
{
n[r - 1][s - 1][j] = 0;
}
if (n[r - 1][s - 1][j] == 0)
{
Ps[r - 1][s - 1][j] = p->P[j];
}
else
{
dcp = LAM_CARR[j] * (p->L[j] - Lp[r - 1][s - 1][j]);
Ps[r - 1][s - 1][j] = p->P[j] / ns + (Ps[r - 1][s - 1][j] + dcp) * (ns - 1) / ns;
}
if (++n[r - 1][s - 1][j] < ns)
{
p->P[j] = 0.0;
}
else
{
p->P[j] = Ps[r - 1][s - 1][j];
}
Lp[r - 1][s - 1][j] = p->L[j];
}
}
}
/* uncompress file -------------------------------------------------------------
* uncompress (uncompress/unzip/uncompact hatanaka-compression/tar) file
* args : char *file I input file
* char *uncfile O uncompressed file
* return : status (-1:error,0:not compressed file,1:uncompress completed)
* note : creates uncompressed file in tempolary directory
* gzip and crx2rnx commands have to be installed in commands path
*-----------------------------------------------------------------------------*/
int rtk_uncompress(const char *file, char *uncfile)
{
int stat = 0;
char *p;
char cmd[2048] = "";
char tmpfile[1024] = "";
char buff[1024];
char *fname;
char *dir = const_cast("");
trace(3, "rtk_uncompress: file=%s\n", file);
if (strlen(file) < 1025)
{
std::strncpy(tmpfile, file, 1024);
tmpfile[1023] = '\0';
}
else
{
trace(1, "file array is too long");
}
if (!(p = strrchr(tmpfile, '.')))
{
return 0;
}
/* uncompress by gzip */
if (!strcmp(p, ".z") || !strcmp(p, ".Z") ||
!strcmp(p, ".gz") || !strcmp(p, ".GZ") ||
!strcmp(p, ".zip") || !strcmp(p, ".ZIP"))
{
std::strncpy(uncfile, tmpfile, 1024);
uncfile[p - tmpfile] = '\0';
std::snprintf(cmd, sizeof(cmd), R"(gzip -f -d -c "%s" > "%s")", tmpfile, uncfile);
if (execcmd(cmd))
{
if (remove(uncfile) != 0)
{
trace(1, "Error removing file");
}
return -1;
}
if (strlen(uncfile) < 1025)
{
std::strncpy(tmpfile, uncfile, 1024);
tmpfile[1023] = '\0';
}
stat = 1;
}
/* extract tar file */
if ((p = strrchr(tmpfile, '.')) && !strcmp(p, ".tar"))
{
std::strncpy(uncfile, tmpfile, 1024);
uncfile[p - tmpfile] = '\0';
std::strncpy(buff, tmpfile, 1024);
fname = buff;
if ((p = strrchr(buff, '/')))
{
*p = '\0';
dir = fname;
fname = p + 1;
}
std::ostringstream temp;
std::string s_aux1(dir);
std::string s_aux2(tmpfile);
temp << "tar -C " << s_aux1 << " -xf " << s_aux2;
std::string s_aux = temp.str();
int n = s_aux.length();
if (n < 2048)
{
for (int i = 0; i < n; i++)
{
cmd[i] = s_aux[i];
}
}
if (execcmd(cmd))
{
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
return -1;
}
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
stat = 1;
}
/* extract hatanaka-compressed file by cnx2rnx */
else if ((p = strrchr(tmpfile, '.')) && strlen(p) > 3 && (*(p + 3) == 'd' || *(p + 3) == 'D'))
{
std::strncpy(uncfile, tmpfile, 1024);
uncfile[p - tmpfile + 3] = *(p + 3) == 'D' ? 'O' : 'o';
std::snprintf(cmd, sizeof(cmd), R"(crx2rnx < "%s" > "%s")", tmpfile, uncfile);
if (execcmd(cmd))
{
if (remove(uncfile) != 0)
{
trace(1, "Error removing file");
}
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
return -1;
}
if (stat)
{
if (remove(tmpfile) != 0)
{
trace(1, "Error removing file");
}
}
stat = 1;
}
trace(3, "rtk_uncompress: stat=%d\n", stat);
return stat;
}
/* expand file path ------------------------------------------------------------
* expand file path with wild-card (*) in file
* args : char *path I file path to expand (captal insensitive)
* char *paths O expanded file paths
* int nmax I max number of expanded file paths
* return : number of expanded file paths
* notes : the order of expanded files is alphabetical order
*-----------------------------------------------------------------------------*/
int expath(const char *path, char *paths[], int nmax)
{
int i;
int j;
int n = 0;
char tmp[1024] = "";
struct dirent *d;
DIR *dp;
const char *file = path;
char dir[1024] = "";
char s1[1024];
char s2[1024];
char *p;
char *q;
char *r;
trace(3, "expath : path=%s nmax=%d\n", path, nmax);
// TODO: Fix invalid conversion from ‘const char*’ to ‘char*’
// if ((p=strrchr(path,'/')) || (p=strrchr(path,'\\'))) {
// file=p+1; strncpy(dir,path,p-path+1); dir[p-path+1]='\0';
// }
if (!(dp = opendir(*dir ? dir : ".")))
{
return 0;
}
while ((d = readdir(dp)))
{
if (*(d->d_name) == '.')
{
continue;
}
std::snprintf(s1, sizeof(s1), "^%s$", d->d_name);
std::snprintf(s2, sizeof(s2), "^%s$", file);
for (p = s1; *p; p++)
{
*p = static_cast(tolower(static_cast(*p)));
}
for (p = s2; *p; p++)
{
*p = static_cast(tolower(static_cast(*p)));
}
for (p = s1, q = strtok_r(s2, "*", &r); q; q = strtok_r(nullptr, "*", &r))
{
if ((p = strstr(p, q)))
{
p += strlen(q);
}
else
{
break;
}
}
if (p && n < nmax)
{
std::snprintf(paths[n++], MAXSTRPATH + 255, "%s%s", dir, d->d_name);
}
}
closedir(dp);
/* sort paths in alphabetical order */
for (i = 0; i < n - 1; i++)
{
for (j = i + 1; j < n; j++)
{
if (strcmp(paths[i], paths[j]) > 0)
{
if (strlen(paths[i]) < 1025)
{
std::strncpy(tmp, paths[i], 1024);
tmp[1023] = '\0';
}
else
{
trace(1, "Path is too long");
}
std::strncpy(paths[i], paths[j], 1024);
std::strncpy(paths[j], tmp, 1024);
}
}
}
for (i = 0; i < n; i++)
{
trace(3, "expath : file=%s\n", paths[i]);
}
return n;
}
/* From RTKLIB 2.4.2 */
void windupcorr(gtime_t time, const double *rs, const double *rr, double *phw)
{
double ek[3];
double exs[3];
double eys[3];
double ezs[3];
double ess[3];
double exr[3];
double eyr[3];
double eks[3];
double ekr[3];
double E[9];
double dr[3];
double ds[3];
double drs[3];
double r[3];
double pos[3];
double rsun[3];
double cosp;
double ph;
double erpv[5] = {0};
int i;
trace(4, "windupcorr: time=%s\n", time_str(time, 0));
/* sun position in ecef */
sunmoonpos(gpst2utc(time), erpv, rsun, nullptr, nullptr);
/* unit vector satellite to receiver */
for (i = 0; i < 3; i++)
{
r[i] = rr[i] - rs[i];
}
if (!normv3(r, ek))
{
return;
}
/* unit vectors of satellite antenna */
for (i = 0; i < 3; i++)
{
r[i] = -rs[i];
}
if (!normv3(r, ezs))
{
return;
}
for (i = 0; i < 3; i++)
{
r[i] = rsun[i] - rs[i];
}
if (!normv3(r, ess))
{
return;
}
cross3(ezs, ess, r);
if (!normv3(r, eys))
{
return;
}
cross3(eys, ezs, exs);
/* unit vectors of receiver antenna */
ecef2pos(rr, pos);
xyz2enu(pos, E);
exr[0] = E[1];
exr[1] = E[4];
exr[2] = E[7]; /* x = north */
eyr[0] = -E[0];
eyr[1] = -E[3];
eyr[2] = -E[6]; /* y = west */
/* phase windup effect */
cross3(ek, eys, eks);
cross3(ek, eyr, ekr);
for (i = 0; i < 3; i++)
{
ds[i] = exs[i] - ek[i] * dot(ek, exs, 3) - eks[i];
dr[i] = exr[i] - ek[i] * dot(ek, exr, 3) + ekr[i];
}
cosp = dot(ds, dr, 3) / norm_rtk(ds, 3) / norm_rtk(dr, 3);
if (cosp < -1.0)
{
cosp = -1.0;
}
else if (cosp > 1.0)
{
cosp = 1.0;
}
ph = acos(cosp) / 2.0 / GNSS_PI;
cross3(ds, dr, drs);
if (dot(ek, drs, 3) < 0.0)
{
ph = -ph;
}
*phw = ph + floor(*phw - ph + 0.5); /* in cycle */
}