/*! * \file galileo_e1_pcps_8ms_ambiguous_acquisition.cc * \brief Adapts a Galileo PCPS 8ms acquisition block to an * AcquisitionInterface for Galileo E1 Signals * \author Marc Molina, 2013. marc.molina.pena(at)gmail.com * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "galileo_e1_pcps_8ms_ambiguous_acquisition.h" #include "Galileo_E1.h" #include "configuration_interface.h" #include "galileo_e1_signal_replica.h" #include "gnss_sdr_flags.h" #include #include #include #if HAS_STD_SPAN #include namespace own = std; #else #include namespace own = gsl; #endif GalileoE1Pcps8msAmbiguousAcquisition::GalileoE1Pcps8msAmbiguousAcquisition( const ConfigurationInterface* configuration, const std::string& role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { configuration_ = configuration; const std::string default_item_type("gr_complex"); const std::string default_dump_filename("../data/acquisition.dat"); DLOG(INFO) << "role " << role; item_type_ = configuration_->property(role + ".item_type", default_item_type); int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); dump_ = configuration_->property(role + ".dump", false); doppler_max_ = configuration_->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) { doppler_max_ = FLAGS_doppler_max; } sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); if (sampled_ms_ % 4 != 0) { sampled_ms_ = static_cast(sampled_ms_ / 4) * 4; LOG(WARNING) << "coherent_integration_time should be multiple of " << "Galileo code length (4 ms). coherent_integration_time = " << sampled_ms_ << " ms will be used."; } max_dwells_ = configuration_->property(role + ".max_dwells", 1); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); // -- Find number of samples per spreading code (4 ms) ----------------- code_length_ = static_cast(round( fs_in_ / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS))); vector_length_ = code_length_ * static_cast(sampled_ms_ / 4); auto samples_per_ms = static_cast(code_length_) / 4; code_ = std::vector>(vector_length_); bool enable_monitor_output = configuration->property("AcquisitionMonitor.enable_monitor", false); if (item_type_ == "gr_complex") { item_size_ = sizeof(gr_complex); acquisition_cc_ = galileo_pcps_8ms_make_acquisition_cc(sampled_ms_, max_dwells_, doppler_max_, fs_in_, samples_per_ms, code_length_, dump_, dump_filename_, enable_monitor_output); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; } else { item_size_ = sizeof(gr_complex); LOG(WARNING) << item_type_ << " unknown acquisition item type"; } channel_ = 0; threshold_ = 0.0; doppler_step_ = 0; gnss_synchro_ = nullptr; if (in_streams_ > 1) { LOG(ERROR) << "This implementation only supports one input stream"; } if (out_streams_ > 0) { LOG(ERROR) << "This implementation does not provide an output stream"; } } void GalileoE1Pcps8msAmbiguousAcquisition::stop_acquisition() { acquisition_cc_->set_active(false); } void GalileoE1Pcps8msAmbiguousAcquisition::set_threshold(float threshold) { float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", static_cast(0.0)); if (pfa == 0.0) { pfa = configuration_->property(role_ + ".pfa", static_cast(0.0)); } if (pfa == 0.0) { threshold_ = threshold; } else { threshold_ = calculate_threshold(pfa); } DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_; if (item_type_ == "gr_complex") { acquisition_cc_->set_threshold(threshold_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; if (item_type_ == "gr_complex") { acquisition_cc_->set_doppler_max(doppler_max_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; if (item_type_ == "gr_complex") { acquisition_cc_->set_doppler_step(doppler_step_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_gnss_synchro( Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; if (item_type_ == "gr_complex") { acquisition_cc_->set_gnss_synchro(gnss_synchro_); } } signed int GalileoE1Pcps8msAmbiguousAcquisition::mag() { if (item_type_ == "gr_complex") { return acquisition_cc_->mag(); } return 0; } void GalileoE1Pcps8msAmbiguousAcquisition::init() { acquisition_cc_->init(); } void GalileoE1Pcps8msAmbiguousAcquisition::set_local_code() { if (item_type_ == "gr_complex") { bool cboc = configuration_->property( "Acquisition" + std::to_string(channel_) + ".cboc", false); std::vector> code(code_length_); std::array Signal_{}; Signal_[0] = gnss_synchro_->Signal[0]; Signal_[1] = gnss_synchro_->Signal[1]; Signal_[2] = '\0'; galileo_e1_code_gen_complex_sampled(code, Signal_, cboc, gnss_synchro_->PRN, fs_in_, 0, false); own::span code_span(code_.data(), vector_length_); for (unsigned int i = 0; i < sampled_ms_ / 4; i++) { std::copy_n(code.data(), code_length_, code_span.subspan(i * code_length_, code_length_).data()); } acquisition_cc_->set_local_code(code_.data()); } } void GalileoE1Pcps8msAmbiguousAcquisition::reset() { if (item_type_ == "gr_complex") { acquisition_cc_->set_active(true); } } float GalileoE1Pcps8msAmbiguousAcquisition::calculate_threshold(float pfa) const { unsigned int frequency_bins = 0; for (int doppler = static_cast(-doppler_max_); doppler <= static_cast(doppler_max_); doppler += static_cast(doppler_step_)) { frequency_bins++; } DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa; unsigned int ncells = vector_length_ * frequency_bins; double exponent = 1 / static_cast(ncells); double val = pow(1.0 - pfa, exponent); auto lambda = static_cast(vector_length_); boost::math::exponential_distribution mydist(lambda); auto threshold = static_cast(quantile(mydist, val)); return threshold; } void GalileoE1Pcps8msAmbiguousAcquisition::connect(gr::top_block_sptr top_block) { if (item_type_ == "gr_complex") { top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0); } } void GalileoE1Pcps8msAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block) { if (item_type_ == "gr_complex") { top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0); } } gr::basic_block_sptr GalileoE1Pcps8msAmbiguousAcquisition::get_left_block() { return stream_to_vector_; } gr::basic_block_sptr GalileoE1Pcps8msAmbiguousAcquisition::get_right_block() { return acquisition_cc_; }