/*!
* \file fft_length_test.cc
* \brief This file implements timing tests for the FFT.
* \author Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "gnuplot_i.h"
#include "test_flags.h"
#include
#include
#include
#include
#include
#include
DEFINE_int32(fft_iterations_test, 1000, "Number of averaged iterations in FFT length timing test");
DEFINE_bool(plot_fft_length_test, false, "Plots results of FFTLengthTest with gnuplot");
// Note from FFTW documentation: the standard FFTW distribution works most efficiently for arrays whose
// size can be factored into small primes (2, 3, 5, and 7), and otherwise it uses a slower general-purpose routine.
TEST(FFTLengthTest, MeasureExecutionTime)
{
unsigned int fft_sizes[] = {512, 1000, 1024, 1100, 1297, 1400, 1500, 1960, 2000, 2048, 2221, 2500, 3000, 3500, 4000,
4096, 4200, 4500, 4725, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8192, 8500, 9000, 9500, 10000, 10368, 11000,
12000, 15000, 16000, 16384, 27000, 32768, 50000, 65536};
std::chrono::time_point start, end;
std::random_device r;
std::default_random_engine e1(r());
std::default_random_engine e2(r());
std::uniform_real_distribution uniform_dist(-1, 1);
auto func = [](float a, float b) { return gr_complex(a, b); }; // Helper lambda function that returns a gr_complex
auto random_number1 = std::bind(uniform_dist, e1);
auto random_number2 = std::bind(uniform_dist, e2);
auto gen = std::bind(func, random_number1, random_number2); // Function that returns a random gr_complex
std::vector fft_sizes_v(fft_sizes, fft_sizes + sizeof(fft_sizes) / sizeof(unsigned int));
std::sort(fft_sizes_v.begin(), fft_sizes_v.end());
std::vector::const_iterator it;
unsigned int d_fft_size;
std::vector execution_times;
std::vector powers_of_two;
std::vector execution_times_powers_of_two;
EXPECT_NO_THROW(
for (it = fft_sizes_v.cbegin(); it != fft_sizes_v.cend(); ++it) {
gr::fft::fft_complex* d_fft;
d_fft_size = *it;
d_fft = new gr::fft::fft_complex(d_fft_size, true);
std::generate_n(d_fft->get_inbuf(), d_fft_size, gen);
start = std::chrono::system_clock::now();
for (int k = 0; k < FLAGS_fft_iterations_test; k++)
{
d_fft->execute();
}
end = std::chrono::system_clock::now();
std::chrono::duration elapsed_seconds = end - start;
double exec_time = elapsed_seconds.count() / static_cast(FLAGS_fft_iterations_test);
execution_times.push_back(exec_time * 1e3);
std::cout << "FFT execution time for length=" << d_fft_size << " : " << exec_time << " [s]" << std::endl;
delete d_fft;
if ((d_fft_size & (d_fft_size - 1)) == 0) // if it is a power of two
{
powers_of_two.push_back(d_fft_size);
execution_times_powers_of_two.push_back(exec_time / 1e-3);
}
});
if (FLAGS_plot_fft_length_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_fft_length_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("linespoints");
if (FLAGS_show_plots)
{
g1.showonscreen(); // window output
}
else
{
g1.disablescreen();
}
g1.set_title("FFT execution times for different lengths");
g1.set_grid();
g1.set_xlabel("FFT length");
g1.set_ylabel("Execution time [ms]");
g1.plot_xy(fft_sizes_v, execution_times, "FFT execution time (averaged over " + std::to_string(FLAGS_fft_iterations_test) + " iterations)");
g1.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2");
g1.savetops("FFT_execution_times_extended");
g1.savetopdf("FFT_execution_times_extended", 18);
Gnuplot g2("linespoints");
if (FLAGS_show_plots)
{
g2.showonscreen(); // window output
}
else
{
g2.disablescreen();
}
g2.set_title("FFT execution times for different lengths (up to 2^{14}=16384)");
g2.set_grid();
g2.set_xlabel("FFT length");
g2.set_ylabel("Execution time [ms]");
g2.set_xrange(0, 16384);
g2.plot_xy(fft_sizes_v, execution_times, "FFT execution time (averaged over " + std::to_string(FLAGS_fft_iterations_test) + " iterations)");
g2.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2");
g2.savetops("FFT_execution_times");
g2.savetopdf("FFT_execution_times", 18);
if (FLAGS_show_plots) g2.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}