/*! * \file gps_navigation_message.h * \brief Interface of a GPS EPHEMERIS storage * \author Javier Arribas, 2013. jarribas(at)cttc.es * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2013 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #ifndef GNSS_SDR_GPS_EPHEMERIS_H_ #define GNSS_SDR_GPS_EPHEMERIS_H_ #include #include #include "boost/assign.hpp" #include "GPS_L1_CA.h" /*! * \brief This class is a storage for the GPS SV ephemeris data as described in IS-GPS-200E * * See http://www.gps.gov/technical/icwg/IS-GPS-200E.pdf Appendix II */ class Gps_Ephemeris { private: public: unsigned int i_satellite_PRN; // SV PRN NUMBER double d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s] double d_Crs; //!< Amplitude of the Sine Harmonic Correction Term to the Orbit Radius [m] double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s] double d_M_0; //!< Mean Anomaly at Reference Time [semi-circles] double d_Cuc; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] double d_e_eccentricity; //!< Eccentricity [dimensionless] double d_Cus; //!< Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude [rad] double d_sqrt_A; //!< Square Root of the Semi-Major Axis [sqrt(m)] double d_Toe; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s] double d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s] double d_Cic; //!< Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination [rad] double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-circles] double d_Cis; //!< Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination [rad] double d_i_0; //!< Inclination Angle at Reference Time [semi-circles] double d_Crc; //!< Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius [m] double d_OMEGA; //!< Argument of Perigee [semi-cicles] double d_OMEGA_DOT; //!< Rate of Right Ascension [semi-circles/s] double d_IDOT; //!< Rate of Inclination Angle [semi-circles/s] int i_code_on_L2; //!< If 1, P code ON in L2; if 2, C/A code ON in L2; int i_GPS_week; //!< GPS week number, aka WN [week] bool b_L2_P_data_flag; //!< When true, indicates that the NAV data stream was commanded OFF on the P-code of the L2 channel int i_SV_accuracy; //!< User Range Accuracy (URA) index of the SV (reference paragraph 6.2.1) for the standard positioning service user (Ref 20.3.3.3.1.3 IS-GPS-200E) int i_SV_health; double d_TGD; //!< Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s] double d_IODC; //!< Issue of Data, Clock int i_AODO; //!< Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s] bool b_fit_interval_flag;//!< indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours. double d_spare1; double d_spare2; double d_A_f0; //!< Coefficient 0 of code phase offset model [s] double d_A_f1; //!< Coefficient 1 of code phase offset model [s/s] double d_A_f2; //!< Coefficient 2 of code phase offset model [s/s^2] // Flags /*! \brief If true, enhanced level of integrity assurance. * * If false, indicates that the conveying signal is provided with the legacy level of integrity assurance. * That is, the probability that the instantaneous URE of the conveying signal exceeds 4.42 times the upper bound * value of the current broadcast URA index, for more than 5.2 seconds, without an accompanying alert, is less * than 1E-5 per hour. If true, indicates that the conveying signal is provided with an enhanced level of * integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 5.73 * times the upper bound value of the current broadcast URA index, for more than 5.2 seconds, without an * accompanying alert, is less than 1E-8 per hour. */ bool b_integrity_status_flag; bool b_alert_flag; //!< If true, indicates that the SV URA may be worse than indicated in d_SV_accuracy, use that SV at our own risk. bool b_antispoofing_flag; //!< If true, the AntiSpoofing mode is ON in that SV /*! * Default constructor */ Gps_Ephemeris(); }; #endif