/*!
* \file pvt_solution.cc
* \brief Implementation of a base class for a PVT solution
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "pvt_solution.h"
#include
#include "GPS_L1_CA.h"
#include
#include
using google::LogMessage;
DEFINE_bool(tropo, true, "Apply tropospheric correction");
Pvt_Solution::Pvt_Solution()
{
d_latitude_d = 0.0;
d_longitude_d = 0.0;
d_height_m = 0.0;
d_avg_latitude_d = 0.0;
d_avg_longitude_d = 0.0;
d_avg_height_m = 0.0;
d_GDOP = 0.0;
d_PDOP = 0.0;
d_HDOP = 0.0;
d_VDOP = 0.0;
d_TDOP = 0.0;
d_flag_averaging = false;
b_valid_position = false;
d_averaging_depth = 0;
d_valid_observations = 0;
d_rx_pos = arma::zeros(3,1);
d_rx_dt_s = 0.0;
}
arma::vec Pvt_Solution::rotateSatellite(double const traveltime, const arma::vec & X_sat)
{
/*
* Returns rotated satellite ECEF coordinates due to Earth
* rotation during signal travel time
*
* Inputs:
* travelTime - signal travel time
* X_sat - satellite's ECEF coordinates
*
* Returns:
* X_sat_rot - rotated satellite's coordinates (ECEF)
*/
//--- Find rotation angle --------------------------------------------------
double omegatau;
omegatau = OMEGA_EARTH_DOT * traveltime;
//--- Build a rotation matrix ----------------------------------------------
arma::mat R3 = arma::zeros(3,3);
R3(0, 0) = cos(omegatau);
R3(0, 1) = sin(omegatau);
R3(0, 2) = 0.0;
R3(1, 0) = -sin(omegatau);
R3(1, 1) = cos(omegatau);
R3(1, 2) = 0.0;
R3(2, 0) = 0.0;
R3(2, 1) = 0.0;
R3(2, 2) = 1;
//--- Do the rotation ------------------------------------------------------
arma::vec X_sat_rot;
X_sat_rot = R3 * X_sat;
return X_sat_rot;
}
int Pvt_Solution::cart2geo(double X, double Y, double Z, int elipsoid_selection)
{
/* Conversion of Cartesian coordinates (X,Y,Z) to geographical
coordinates (latitude, longitude, h) on a selected reference ellipsoid.
Choices of Reference Ellipsoid for Geographical Coordinates
0. International Ellipsoid 1924
1. International Ellipsoid 1967
2. World Geodetic System 1972
3. Geodetic Reference System 1980
4. World Geodetic System 1984
*/
const double a[5] = {6378388.0, 6378160.0, 6378135.0, 6378137.0, 6378137.0};
const double f[5] = {1.0 / 297.0, 1.0 / 298.247, 1.0 / 298.26, 1.0 / 298.257222101, 1.0 / 298.257223563};
double lambda = atan2(Y, X);
double ex2 = (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1.0 - f[elipsoid_selection]) * (1.0 - f[elipsoid_selection]));
double c = a[elipsoid_selection] * sqrt(1.0 + ex2);
double phi = atan(Z / ((sqrt(X * X + Y * Y) * (1.0 - (2.0 - f[elipsoid_selection])) * f[elipsoid_selection])));
double h = 0.1;
double oldh = 0.0;
double N;
int iterations = 0;
do
{
oldh = h;
N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi)));
phi = atan(Z / ((sqrt(X * X + Y * Y) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h) ))));
h = sqrt(X * X + Y * Y) / cos(phi) - N;
iterations = iterations + 1;
if (iterations > 100)
{
DLOG(WARNING) << "Failed to approximate h with desired precision. h-oldh= " << h - oldh;
break;
}
}
while (std::abs(h - oldh) > 1.0e-12);
d_latitude_d = phi * 180.0 / GPS_PI;
d_longitude_d = lambda * 180.0 / GPS_PI;
d_height_m = h;
return 0;
}
int Pvt_Solution::togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
{
/* Subroutine to calculate geodetic coordinates latitude, longitude,
height given Cartesian coordinates X,Y,Z, and reference ellipsoid
values semi-major axis (a) and the inverse of flattening (finv).
The output units of angular quantities will be in decimal degrees
(15.5 degrees not 15 deg 30 min). The output units of h will be the
same as the units of X,Y,Z,a.
Inputs:
a - semi-major axis of the reference ellipsoid
finv - inverse of flattening of the reference ellipsoid
X,Y,Z - Cartesian coordinates
Outputs:
dphi - latitude
dlambda - longitude
h - height above reference ellipsoid
Based in a Matlab function by Kai Borre
*/
*h = 0;
double tolsq = 1.e-10; // tolerance to accept convergence
int maxit = 10; // max number of iterations
double rtd = 180.0 / GPS_PI;
// compute square of eccentricity
double esq;
if (finv < 1.0E-20)
{
esq = 0.0;
}
else
{
esq = (2.0 - 1.0 / finv) / finv;
}
// first guess
double P = sqrt(X * X + Y * Y); // P is distance from spin axis
//direct calculation of longitude
if (P > 1.0E-20)
{
*dlambda = atan2(Y, X) * rtd;
}
else
{
*dlambda = 0.0;
}
// correct longitude bound
if (*dlambda < 0)
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
{
sinphi = Z/r;
}
else
{
sinphi = 0.0;
}
*dphi = asin(sinphi);
// initial value of height = distance from origin minus
// approximate distance from origin to surface of ellipsoid
if (r < 1.0E-20)
{
*h = 0;
return 1;
}
*h = r - a * (1 - sinphi * sinphi/finv);
// iterate
double cosphi;
double N_phi;
double dP;
double dZ;
double oneesq = 1.0 - esq;
for (int i = 0; i < maxit; i++)
{
sinphi = sin(*dphi);
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq * sinphi * sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi * oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi * dZ + cosphi * dP);
*dphi = *dphi + (cosphi * dZ - sinphi * dP)/(N_phi + (*h));
// test for convergence
if ((dP * dP + dZ * dZ) < tolsq)
{
break;
}
if (i == (maxit - 1))
{
LOG(WARNING) << "The computation of geodetic coordinates did not converge";
}
}
*dphi = (*dphi) * rtd;
return 0;
}
int Pvt_Solution::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km)
{
/* Inputs:
sinel - sin of elevation angle of satellite
hsta_km - height of station in km
p_mb - atmospheric pressure in mb at height hp_km
t_kel - surface temperature in degrees Kelvin at height htkel_km
hum - humidity in % at height hhum_km
hp_km - height of pressure measurement in km
htkel_km - height of temperature measurement in km
hhum_km - height of humidity measurement in km
Outputs:
ddr_m - range correction (meters)
Reference
Goad, C.C. & Goodman, L. (1974) A Modified Hopfield Tropospheric
Refraction Correction Model. Paper presented at the
American Geophysical Union Annual Fall Meeting, San
Francisco, December 12-17
Translated to C++ by Carles Fernandez from a Matlab implementation by Kai Borre
*/
const double a_e = 6378.137; // semi-major axis of earth ellipsoid
const double b0 = 7.839257e-5;
const double tlapse = -6.5;
const double em = -978.77 / (2.8704e6 * tlapse * 1.0e-5);
double tkhum = t_kel + tlapse * (hhum_km - htkel_km);
double atkel = 7.5 * (tkhum - 273.15) / (237.3 + tkhum - 273.15);
double e0 = 0.0611 * hum * pow(10, atkel);
double tksea = t_kel - tlapse * htkel_km;
double tkelh = tksea + tlapse * hhum_km;
double e0sea = e0 * pow((tksea / tkelh), (4 * em));
double tkelp = tksea + tlapse * hp_km;
double psea = p_mb * pow((tksea / tkelp), em);
if(sinel < 0) { sinel = 0.0; }
double tropo_delay = 0.0;
bool done = false;
double refsea = 77.624e-6 / tksea;
double htop = 1.1385e-5 / refsea;
refsea = refsea * psea;
double ref = refsea * pow(((htop - hsta_km) / htop), 4);
double a;
double b;
double rtop;
while(1)
{
rtop = pow((a_e + htop), 2) - pow((a_e + hsta_km), 2) * (1 - pow(sinel, 2));
// check to see if geometry is crazy
if(rtop < 0) { rtop = 0; }
rtop = sqrt(rtop) - (a_e + hsta_km) * sinel;
a = -sinel / (htop - hsta_km);
b = -b0 * (1 - pow(sinel,2)) / (htop - hsta_km);
arma::vec rn = arma::vec(8);
rn.zeros();
for(int i = 0; i<8; i++)
{
rn(i) = pow(rtop, (i+1+1));
}
arma::rowvec alpha = {2 * a, 2 * pow(a, 2) + 4 * b /3, a * (pow(a, 2) + 3 * b),
pow(a, 4)/5 + 2.4 * pow(a, 2) * b + 1.2 * pow(b, 2), 2 * a * b * (pow(a, 2) + 3 * b)/3,
pow(b, 2) * (6 * pow(a, 2) + 4 * b) * 1.428571e-1, 0, 0};
if(pow(b, 2) > 1.0e-35)
{
alpha(6) = a * pow(b, 3) /2;
alpha(7) = pow(b, 4) / 9;
}
double dr = rtop;
arma::mat aux_ = alpha * rn;
dr = dr + aux_(0, 0);
tropo_delay = tropo_delay + dr * ref * 1000;
if(done == true)
{
*ddr_m = tropo_delay;
break;
}
done = true;
refsea = (371900.0e-6 / tksea - 12.92e-6) / tksea;
htop = 1.1385e-5 * (1255 / tksea + 0.05) / refsea;
ref = refsea * e0sea * pow(((htop - hsta_km) / htop), 4);
}
return 0;
}
int Pvt_Solution::topocent(double *Az, double *El, double *D, const arma::vec & x, const arma::vec & dx)
{
/* Transformation of vector dx into topocentric coordinate
system with origin at x
Inputs:
x - vector origin coordinates (in ECEF system [X; Y; Z;])
dx - vector ([dX; dY; dZ;]).
Outputs:
D - vector length. Units like the input
Az - azimuth from north positive clockwise, degrees
El - elevation angle, degrees
Based on a Matlab function by Kai Borre
*/
double lambda;
double phi;
double h;
double dtr = GPS_PI / 180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
Pvt_Solution::togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
double cl = cos(lambda * dtr);
double sl = sin(lambda * dtr);
double cb = cos(phi * dtr);
double sb = sin(phi * dtr);
arma::mat F = arma::zeros(3,3);
F(0,0) = -sl;
F(0,1) = -sb * cl;
F(0,2) = cb * cl;
F(1,0) = cl;
F(1,1) = -sb * sl;
F(1,2) = cb * sl;
F(2,0) = 0;
F(2,1) = cb;
F(2,2) = sb;
arma::vec local_vector;
local_vector = arma::htrans(F) * dx;
double E = local_vector(0);
double N = local_vector(1);
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E * E + N * N);
if (hor_dis < 1.0E-20)
{
*Az = 0;
*El = 90;
}
else
{
*Az = atan2(E, N) / dtr;
*El = atan2(U, hor_dis) / dtr;
}
if (*Az < 0)
{
*Az = *Az + 360.0;
}
*D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2));
return 0;
}
int Pvt_Solution::compute_DOP()
{
// ###### Compute DOPs ########
// 1- Rotation matrix from ECEF coordinates to ENU coordinates
// ref: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
arma::mat F = arma::zeros(3,3);
F(0,0) = -sin(GPS_TWO_PI * (d_longitude_d/360.0));
F(0,1) = -sin(GPS_TWO_PI * (d_latitude_d/360.0)) * cos(GPS_TWO_PI * (d_longitude_d/360.0));
F(0,2) = cos(GPS_TWO_PI * (d_latitude_d/360.0)) * cos(GPS_TWO_PI * (d_longitude_d/360.0));
F(1,0) = cos((GPS_TWO_PI * d_longitude_d)/360.0);
F(1,1) = -sin((GPS_TWO_PI * d_latitude_d)/360.0) * sin((GPS_TWO_PI * d_longitude_d)/360.0);
F(1,2) = cos((GPS_TWO_PI * d_latitude_d/360.0)) * sin((GPS_TWO_PI * d_longitude_d)/360.0);
F(2,0) = 0;
F(2,1) = cos((GPS_TWO_PI * d_latitude_d)/360.0);
F(2,2) = sin((GPS_TWO_PI * d_latitude_d/360.0));
// 2- Apply the rotation to the latest covariance matrix (available in ECEF from LS)
arma::mat Q_ECEF = d_Q.submat(0, 0, 2, 2);
arma::mat DOP_ENU = arma::zeros(3, 3);
try
{
DOP_ENU = arma::htrans(F) * Q_ECEF * F;
d_GDOP = sqrt(arma::trace(DOP_ENU)); // Geometric DOP
d_PDOP = sqrt(DOP_ENU(0, 0) + DOP_ENU(1, 1) + DOP_ENU(2, 2));// PDOP
d_HDOP = sqrt(DOP_ENU(0, 0) + DOP_ENU(1, 1)); // HDOP
d_VDOP = sqrt(DOP_ENU(2, 2)); // VDOP
d_TDOP = sqrt(d_Q(3, 3)); // TDOP
}
catch(std::exception& ex)
{
d_GDOP = -1; // Geometric DOP
d_PDOP = -1; // PDOP
d_HDOP = -1; // HDOP
d_VDOP = -1; // VDOP
d_TDOP = -1; // TDOP
}
return 0;
}
int Pvt_Solution::set_averaging_depth(int depth)
{
d_averaging_depth = depth;
return 0;
}
int Pvt_Solution::pos_averaging(bool flag_averaring)
{
// MOVING AVERAGE PVT
bool avg = flag_averaring;
if (avg == true)
{
if (d_hist_longitude_d.size() == (unsigned int)d_averaging_depth)
{
// Pop oldest value
d_hist_longitude_d.pop_back();
d_hist_latitude_d.pop_back();
d_hist_height_m.pop_back();
// Push new values
d_hist_longitude_d.push_front(d_longitude_d);
d_hist_latitude_d.push_front(d_latitude_d);
d_hist_height_m.push_front(d_height_m);
d_avg_latitude_d = 0.0;
d_avg_longitude_d = 0.0;
d_avg_height_m = 0.0;
for (unsigned int i = 0; i < d_hist_longitude_d.size(); i++)
{
d_avg_latitude_d = d_avg_latitude_d + d_hist_latitude_d.at(i);
d_avg_longitude_d = d_avg_longitude_d + d_hist_longitude_d.at(i);
d_avg_height_m = d_avg_height_m + d_hist_height_m.at(i);
}
d_avg_latitude_d = d_avg_latitude_d / static_cast(d_averaging_depth);
d_avg_longitude_d = d_avg_longitude_d / static_cast(d_averaging_depth);
d_avg_height_m = d_avg_height_m / static_cast(d_averaging_depth);
b_valid_position = true;
}
else
{
//int current_depth=d_hist_longitude_d.size();
// Push new values
d_hist_longitude_d.push_front(d_longitude_d);
d_hist_latitude_d.push_front(d_latitude_d);
d_hist_height_m.push_front(d_height_m);
d_avg_latitude_d = d_latitude_d;
d_avg_longitude_d = d_longitude_d;
d_avg_height_m = d_height_m;
b_valid_position = false;
}
}
else
{
b_valid_position = true;
}
return 0;
}