; Default configuration file ; You can define your own receiver and invoke it by doing ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz]. GNSS-SDR.internal_fs_sps=5456000 ;######### SIGNAL_SOURCE CONFIG ############ ;#implementation SignalSource.implementation=Labsat_Signal_Source SignalSource.selected_channel=1 ;#filename: path to file with the captured GNSS signal samples to be processed ;# Labsat sile source automatically increments the file name when the signal is split in several files ;# the adapter adds "_0000.LS3" to this base path and filename. Next file will be "_0001.LS3" and so on ;# in this example, the first file complete path will be ../signals/GPS_025_0000.LS3 SignalSource.filename=../signals/GPS_025 ; <- PUT YOUR FILE HERE ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. SignalSource.item_type=gr_complex ;#sampling_frequency: Original Signal sampling frequency in samples per second SignalSource.sampling_frequency=16368000 ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. SignalSource.samples=0 ;#repeat: Repeat the processing file. SignalSource.repeat=false ;#dump: Dump the Signal source data to a file. SignalSource.dump=false SignalSource.dump_filename=../data/signal_source.dat ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. ; it helps to not overload the CPU, but the processing time will be longer. SignalSource.enable_throttle_control=false ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner.implementation=Signal_Conditioner ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. ;#implementation: [Pass_Through] disables this block DataTypeAdapter.implementation=Pass_Through DataTypeAdapter.item_type=gr_complex ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation ;# that shifts IF down to zero Hz. InputFilter.implementation=Freq_Xlating_Fir_Filter ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=../data/input_filter.dat ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, ;#the desired response on those bands, and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. InputFilter.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 InputFilter.band1_end=0.45 InputFilter.band2_begin=0.55 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;# Original sampling frequency stored in the signal file InputFilter.sampling_frequency=16368000 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.IF=0 ;# Decimation factor after the frequency tranaslating block InputFilter.decimation_factor=3 ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available GPS satellite channels. Channels_1C.count=0 ;#count: Number of available Galileo satellite channels. Channels_1B.count=6 ;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver Channels.in_acquisition=1 ;#signal: ;#if the option is disabled by default is assigned "1C" GPS L1 C/A Channel0.signal=1B Channel1.signal=1B Channel2.signal=1B Channel3.signal=1B Channel4.signal=1B Channel5.signal=1B Channel6.signal=1B Channel7.signal=1B Channel8.signal=1B Channel9.signal=1B Channel10.signal=1B Channel11.signal=1B Channel12.signal=1B Channel13.signal=1B Channel14.signal=1B Channel15.signal=1B ;######### GPS ACQUISITION CONFIG ############ Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition ;#item_type: Type and resolution for each of the signal samples. Acquisition_1C.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_1C.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_1C.sampled_ms=1 Acquisition_1C.use_CFAR_algorithm=false; ;#threshold: Acquisition threshold Acquisition_1C.threshold=22 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_1C.doppler_max=5000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_1C.doppler_step=250 ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_1C.dump=false ;#filename: Log path and filename Acquisition_1C.dump_filename=./acq_dump.dat ;######### GALILEO ACQUISITION CONFIG ############ Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition ;#item_type: Type and resolution for each of the signal samples. Acquisition_1B.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_1B.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_1B.sampled_ms=4 Acquisition_1B.acquire_pilot=true Acquisition_1B.use_CFAR_algorithm=false ;#threshold: Acquisition threshold Acquisition_1B.threshold=22 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_1B.doppler_max=5000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_1B.doppler_step=125 Acquisition_1B.bit_transition_flag=true ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_1B.dump=false ;#filename: Log path and filename Acquisition_1B.dump_filename=../data/acq_dump.dat ;######### TRACKING GPS CONFIG ############ Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking ;#item_type: Type and resolution for each of the signal samples. Tracking_1C.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_1C.if=0 ;#pll_bw_hz: PLL loop filter bandwidth [Hz] Tracking_1C.pll_bw_hz=40.0; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] Tracking_1C.dll_bw_hz=2.0; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_1C.order=3; ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_1C.dump=true ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_1C.dump_filename=../data/epl_tracking_ch_ ;######### TRACKING GALILEO CONFIG ############ Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking ;#item_type: Type and resolution for each of the signal samples. Tracking_1B.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_1B.if=0 Tracking_1B.track_pilot=true ;#pll_bw_hz: PLL loop filter bandwidth [Hz] Tracking_1B.pll_bw_hz=7.5; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] Tracking_1B.dll_bw_hz=0.5; ;#pll_bw_hz: PLL loop filter bandwidth [Hz] Tracking_1B.pll_bw_narrow_hz=2.5; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] Tracking_1B.dll_bw_narrow_hz=0.25; Tracking_1B.extend_correlation_symbols=4; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_1B.order=3; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo Tracking_1B.early_late_space_chips=0.15; ;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6] Tracking_1B.very_early_late_space_chips=0.6; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo Tracking_1B.early_late_space_narrow_chips=0.15; ;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6] Tracking_1B.very_early_late_space_narrow_chips=0.30; ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_1B.dump=true ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_1B.dump_filename=../data/veml_tracking_ch_ ;######### TELEMETRY DECODER GPS CONFIG ############ ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder TelemetryDecoder_1C.dump=false ;######### TELEMETRY DECODER GALILEO CONFIG ############ ;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder TelemetryDecoder_1B.dump=false ;######### OBSERVABLES CONFIG ############ ;#implementation: Observables.implementation=Hybrid_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ ;#implementation: Position Velocity and Time (PVT) implementation: PVT.implementation=RTKLIB_PVT PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] PVT.output_rate_ms=100; ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. PVT.display_rate_ms=500; PVT.flag_rtcm_server=false PVT.flag_rtcm_tty_port=false PVT.rtcm_dump_devname=/dev/pts/1 ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] PVT.dump=false ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. PVT.dump_filename=./PVT