/*! * \file gps_l1_ca_dll_pll_tracking_gpu_cc.cc * \brief Implementation of a code DLL + carrier PLL tracking block GPU ACCELERATED * \author Javier Arribas, 2015. jarribas(at)cttc.es * * ----------------------------------------------------------------------------- * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "gps_l1_ca_dll_pll_tracking_gpu_cc.h" #include "GPS_L1_CA.h" #include "gnss_satellite.h" #include "gnss_sdr_flags.h" #include "gps_sdr_signal_processing.h" #include "lock_detectors.h" #include "tracking_discriminators.h" #include #include #include #include #include #include #include #include gps_l1_ca_dll_pll_tracking_gpu_cc_sptr gps_l1_ca_dll_pll_make_tracking_gpu_cc( int64_t fs_in, uint32_t vector_length, bool dump, std::string dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) { return gps_l1_ca_dll_pll_tracking_gpu_cc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc( fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips)); } void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { if (noutput_items != 0) { ninput_items_required[0] = static_cast(d_vector_length) * 2; // set the required available samples in each call } } Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc( int64_t fs_in, uint32_t vector_length, bool dump, std::string dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) : gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { // Telemetry bit synchronization message port input this->message_port_register_in(pmt::mp("preamble_timestamp_s")); this->message_port_register_out(pmt::mp("events")); this->message_port_register_in(pmt::mp("telemetry_to_trk")); // initialize internal vars d_dump = dump; d_fs_in = fs_in; d_vector_length = vector_length; d_dump_filename = dump_filename; d_correlation_length_samples = static_cast(d_vector_length); // Initialize tracking ========================================== d_code_loop_filter.set_DLL_BW(dll_bw_hz); d_carrier_loop_filter.set_params(10.0, pll_bw_hz, 2); // --- DLL variables ------------------------------------------------------- d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) // Set GPU flags cudaSetDeviceFlags(cudaDeviceMapHost); // allocate host memory // pinned memory mode - use special function to get OS-pinned memory d_n_correlator_taps = 3; // Early, Prompt, and Late // Get space for a vector with the C/A code replica sampled 1x/chip cudaHostAlloc(reinterpret_cast(&d_ca_code), (static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined); // Get space for the resampled early / prompt / late local replicas cudaHostAlloc(reinterpret_cast(&d_local_code_shift_chips), d_n_correlator_taps * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined); cudaHostAlloc(reinterpret_cast(&in_gpu), 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined); // correlator outputs (scalar) cudaHostAlloc(reinterpret_cast(&d_correlator_outs), sizeof(gr_complex) * d_n_correlator_taps, cudaHostAllocMapped || cudaHostAllocWriteCombined); // Set TAPs delay values [chips] d_local_code_shift_chips[0] = -d_early_late_spc_chips; d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = d_early_late_spc_chips; // --- Perform initializations ------------------------------ multicorrelator_gpu = new cuda_multicorrelator(); // local code resampler on GPU multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, d_n_correlator_taps); multicorrelator_gpu->set_input_output_vectors(d_correlator_outs, in_gpu); // define initial code frequency basis of NCO d_code_freq_chips = GPS_L1_CA_CODE_RATE_CPS; // define residual code phase (in chips) d_rem_code_phase_samples = 0.0; // define residual carrier phase d_rem_carrier_phase_rad = 0.0; // sample synchronization d_sample_counter = 0ULL; // d_sample_counter_seconds = 0; d_acq_sample_stamp = 0; d_enable_tracking = false; d_pull_in = false; // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = std::vector(FLAGS_cn0_samples); d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = FLAGS_carrier_lock_th; systemName["G"] = std::string("GPS"); systemName["S"] = std::string("SBAS"); set_relative_rate(1.0 / (static_cast(d_vector_length) * 2.0)); d_acquisition_gnss_synchro = 0; d_channel = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_acc_carrier_phase_cycles = 0.0; d_code_phase_samples = 0.0; d_pll_to_dll_assist_secs_Ti = 0.0; d_rem_code_phase_chips = 0.0; d_code_phase_step_chips = 0.0; d_carrier_phase_step_rad = 0.0; d_acc_carrier_phase_initialized = false; // set_min_output_buffer((int64_t)300); } void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking() { /* * correct the code phase according to the delay between acq and trk */ d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; const int64_t acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp); // -d_vector_length; DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; const double acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); // doppler effect // Fd=(C/(C+Vr))*F const double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ; // new chip and prn sequence periods based on acq Doppler d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_CPS; d_code_phase_step_chips = static_cast(d_code_freq_chips) / static_cast(d_fs_in); const double T_chip_mod_seconds = 1 / d_code_freq_chips; const double T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; const double T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); d_correlation_length_samples = round(T_prn_mod_samples); const double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_CPS; const double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); const double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; const double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; double corrected_acq_phase_samples, delay_correction_samples; corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); if (corrected_acq_phase_samples < 0) { corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; } delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_phase_step_rad = TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); // DLL/PLL filter initialization d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator d_code_loop_filter.initialize(); // initialize the code filter // generate local reference ALWAYS starting at chip 1 (1 sample per chip) gps_l1_ca_code_gen_complex(own::span(d_ca_code, static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS)), d_acquisition_gnss_synchro->PRN, 0); multicorrelator_gpu->set_local_code_and_taps(static_cast(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips, d_n_correlator_taps); for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0.0; d_rem_carrier_phase_rad = 0.0; d_rem_code_phase_chips = 0.0; d_acc_carrier_phase_cycles = 0.0; d_pll_to_dll_assist_secs_Ti = 0.0; d_code_phase_samples = d_acq_code_phase_samples; const std::string sys_ = &d_acquisition_gnss_synchro->System; sys = sys_.substr(0, 1); // DEBUG OUTPUT std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << '\n'; LOG(INFO) << "Tracking of GPS L1 C/A signal for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; // enable tracking d_pull_in = true; d_enable_tracking = true; d_acc_carrier_phase_initialized = false; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; } Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc() { if (d_dump_file.is_open()) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } try { cudaFreeHost(in_gpu); cudaFreeHost(d_correlator_outs); cudaFreeHost(d_local_code_shift_chips); cudaFreeHost(d_ca_code); multicorrelator_gpu->free_cuda(); delete (multicorrelator_gpu); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel(uint32_t channel) { d_channel = channel; LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename.append(boost::lexical_cast(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (const std::ifstream::failure *e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what(); } } } } void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; } void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::check_carrier_phase_coherent_initialization() { if (d_acc_carrier_phase_initialized == false) { d_acc_carrier_phase_cycles = -d_rem_carrier_phase_rad / TWO_PI; d_acc_carrier_phase_initialized = true; } } int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // Block input data and block output stream pointers const gr_complex *in = reinterpret_cast(input_items[0]); Gnss_Synchro **out = reinterpret_cast(&output_items[0]); // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data = Gnss_Synchro(); // process vars double code_error_chips_Ti = 0.0; double code_error_filt_chips = 0.0; double code_error_filt_secs_Ti = 0.0; double CURRENT_INTEGRATION_TIME_S = 0.001; double CORRECTED_INTEGRATION_TIME_S = 0.001; double dll_code_error_secs_Ti = 0.0; double carr_phase_error_secs_Ti = 0.0; if (d_enable_tracking == true) { // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // Receiver signal alignment if (d_pull_in == true) { const int32_t acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; const double acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_correlation_length_samples)); const int32_t samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(samples_offset); current_synchro_data.fs = d_fs_in; current_synchro_data.correlation_length_ms = 1; *out[0] = current_synchro_data; d_sample_counter += static_cast(samples_offset); // count for the processed samples d_pull_in = false; consume_each(samples_offset); // shift input to perform alignment with local replica return 1; } // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // perform carrier wipe-off and compute Early, Prompt and Late correlation memcpy(in_gpu, in, sizeof(gr_complex) * d_correlation_length_samples); cudaProfilerStart(); multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(static_cast(d_rem_carrier_phase_rad), static_cast(d_carrier_phase_step_rad), static_cast(d_code_phase_step_chips), static_cast(d_rem_code_phase_chips), d_correlation_length_samples, d_n_correlator_taps); cudaProfilerStop(); // std::cout<<"c_out[0]="<(d_correlation_length_samples) / static_cast(d_fs_in); // ################## PLL ########################################################## // Update PLL discriminator [rads/Ti -> Secs/Ti] carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / TWO_PI; // prompt output // Carrier discriminator filter // NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan // d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME; // Input [s/Ti] -> output [Hz] d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S); // PLL to DLL assistance [Secs/Ti] d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ; // code Doppler frequency update d_code_freq_chips = GPS_L1_CA_CODE_RATE_CPS + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_CPS) / GPS_L1_FREQ_HZ); // ################## DLL ########################################################## // DLL discriminator code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2], d_early_late_spc_chips, 1.0); // [chips/Ti] // early and late // Code discriminator filter code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); // input [chips/Ti] -> output [chips/second] code_error_filt_secs_Ti = code_error_filt_chips * CURRENT_INTEGRATION_TIME_S / d_code_freq_chips; // [s/Ti] // DLL code error estimation [s/Ti] // TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance dll_code_error_secs_Ti = -code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti; // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### // keep alignment parameters for the next input buffer // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation const double T_chip_seconds = 1 / d_code_freq_chips; const double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS; const double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); const double K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast(d_fs_in); d_correlation_length_samples = round(K_blk_samples); // round to a discrete samples d_rem_code_phase_samples = K_blk_samples - static_cast(d_correlation_length_samples); // rounding error < 1 sample // UPDATE REMNANT CARRIER PHASE CORRECTED_INTEGRATION_TIME_S = (static_cast(d_correlation_length_samples) / static_cast(d_fs_in)); // remnant carrier phase [rad] d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, TWO_PI); // UPDATE CARRIER PHASE ACCUULATOR // carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!) d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S; // ################### PLL COMMANDS ################################################# // carrier phase step (NCO phase increment per sample) [rads/sample] d_carrier_phase_step_rad = TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); // ################### DLL COMMANDS ################################################# // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); // remnant code phase [chips] d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); // ####### CN0 ESTIMATION AND LOCK DETECTORS ####################################### if (d_cn0_estimation_counter < FLAGS_cn0_samples) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_m2m4_estimator(d_Prompt_buffer.data(), FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD_S); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer.data(), FLAGS_cn0_samples); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; } if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) { std::cout << "Loss of lock in channel " << d_channel << "!\n"; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } check_carrier_phase_coherent_initialization(); } // ########### Output the tracking data to navigation and PVT ########## current_synchro_data.Prompt_I = static_cast((d_correlator_outs[1]).real()); current_synchro_data.Prompt_Q = static_cast((d_correlator_outs[1]).imag()); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_correlation_length_samples); current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = TWO_PI * d_acc_carrier_phase_cycles; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = 1; } else { for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } current_synchro_data.System = {'G'}; current_synchro_data.correlation_length_ms = 1; current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_correlation_length_samples); } // assign the GNU Radio block output data current_synchro_data.fs = d_fs_in; *out[0] = current_synchro_data; if (d_dump) { // MULTIPLEXED FILE RECORDING - Record results to file float prompt_I; float prompt_Q; float tmp_E, tmp_P, tmp_L; float tmp_VE = 0.0; float tmp_VL = 0.0; float tmp_float; prompt_I = d_correlator_outs[1].real(); prompt_Q = d_correlator_outs[1].imag(); tmp_E = std::abs(d_correlator_outs[0]); tmp_P = std::abs(d_correlator_outs[1]); tmp_L = std::abs(d_correlator_outs[2]); try { // Dump correlators output d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); // PRN start sample stamp d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(uint64_t)); // accumulated carrier phase tmp_float = static_cast(d_acc_carrier_phase_cycles * TWO_PI); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier and code frequency tmp_float = static_cast(d_carrier_doppler_hz); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_code_freq_chips); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // PLL commands tmp_float = 1.0 / (carr_phase_error_secs_Ti * CURRENT_INTEGRATION_TIME_S); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = 1.0 / (code_error_filt_secs_Ti * CURRENT_INTEGRATION_TIME_S); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // DLL commands tmp_float = code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = code_error_filt_secs_Ti; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // CN0 and carrier lock test tmp_float = static_cast(d_CN0_SNV_dB_Hz); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = static_cast(d_carrier_lock_test); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // AUX vars (for debug purposes) tmp_float = code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); double tmp_double = static_cast(d_sample_counter + d_correlation_length_samples); d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); // PRN uint32_t prn_ = d_acquisition_gnss_synchro->PRN; d_dump_file.write(reinterpret_cast(&prn_), sizeof(uint32_t)); } catch (const std::ifstream::failure *e) { LOG(WARNING) << "Exception writing trk dump file " << e->what(); } } consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates d_sample_counter += d_correlation_length_samples; // count for the processed samples if (d_enable_tracking) { return 1; } else { return 0; } }