/*! * \file beidou_b1i_telemetry_decoder_cc.cc * \brief Implementation of a NAV message demodulator block based on * Kay Borre book MATLAB-based GPS receiver * \author Sergi Segura, 2018. sergi.segura.munoz(at)gmail.es * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "beidou_b1i_telemetry_decoder_cc.h" #include "control_message_factory.h" #include #include #include #include #ifndef _rotl #define _rotl(X, N) ((X << N) ^ (X >> (32 - N))) // Used in the parity check algorithm #endif using google::LogMessage; beidou_b1i_telemetry_decoder_cc_sptr beidou_b1i_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump) { return beidou_b1i_telemetry_decoder_cc_sptr(new beidou_b1i_telemetry_decoder_cc(satellite, dump)); } beidou_b1i_telemetry_decoder_cc::beidou_b1i_telemetry_decoder_cc( const Gnss_Satellite &satellite, bool dump) : gr::block("beidou_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { // Ephemeris data port out this->message_port_register_out(pmt::mp("telemetry")); // initialize internal vars d_dump = dump; d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); // set the preamble unsigned short int preambles_bits[BEIDOU_B1I_PREAMBLE_LENGTH_BITS] = BEIDOU_PREAMBLE; // preamble bits to sampled symbols d_preambles_symbols = static_cast(volk_gnsssdr_malloc(BEIDOU_B1I_PREAMBLE_LENGTH_SYMBOLS * sizeof(int), volk_gnsssdr_get_alignment())); int n = 0; for (int i = 0; i < BEIDOU_B1I_PREAMBLE_LENGTH_BITS; i++) { if (preambles_bits[i] == 1) { d_preambles_symbols[n] = 1; } else { d_preambles_symbols[n] = -1; } n++; } d_stat = 0; d_symbol_accumulator = 0; d_symbol_accumulator_counter = 0; d_frame_bit_index = 0; d_flag_frame_sync = false; d_BEIDOU_frame_4bytes = 0; d_prev_BEIDOU_frame_4bytes = 0; d_flag_parity = false; d_TOW_at_Preamble_ms = 0; flag_TOW_set = false; d_flag_preamble = false; d_flag_new_tow_available = false; word_number = 0; d_channel = 0; flag_PLL_180_deg_phase_locked = false; d_preamble_time_samples = 0; d_TOW_at_current_symbol_ms = 0; d_symbol_history.resize(BEIDOU_B1I_PREAMBLE_LENGTH_BITS); // Change fixed buffer size d_symbol_nh_history.resize(BEIDOU_B1I_NH_CODE_LENGTH + 1); // Change fixed buffer size d_bit_buffer.resize(30); // Change fixed buffer size d_symbol_history.clear(); // Clear all the elements in the buffer d_symbol_nh_history.clear(); d_bit_buffer.clear(); d_make_correlation = true; d_symbol_counter_corr = 0; for (int aux = 0; aux < BEIDOU_B1I_NH_CODE_LENGTH; aux++) { if (BEIDOU_B1I_NH_CODE[aux] == 0) { bits_NH[aux] = -1.0; } else { bits_NH[aux] = 1.0; } } sync_NH = false; new_sym = false; } beidou_b1i_telemetry_decoder_cc::~beidou_b1i_telemetry_decoder_cc() { volk_gnsssdr_free(d_preambles_symbols); if (d_dump_file.is_open() == true) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what(); } } } bool beidou_b1i_telemetry_decoder_cc::beidou_word_parityCheck(unsigned int beidouword) { unsigned int d1, d2, d3, d4, d5, d6, d7, t, parity; /* XOR as many bits in parallel as possible. The magic constants pick up bits which are to be XOR'ed together to implement the GPS parity check algorithm described in IS-GPS-200E. This avoids lengthy shift- and-xor loops. */ d1 = beidouword & 0xFBFFBF00; d2 = _rotl(beidouword, 1) & 0x07FFBF01; d3 = _rotl(beidouword, 2) & 0xFC0F8100; d4 = _rotl(beidouword, 3) & 0xF81FFE02; d5 = _rotl(beidouword, 4) & 0xFC00000E; d6 = _rotl(beidouword, 5) & 0x07F00001; d7 = _rotl(beidouword, 6) & 0x00003000; t = d1 ^ d2 ^ d3 ^ d4 ^ d5 ^ d6 ^ d7; // Now XOR the 5 6-bit fields together to produce the 6-bit final result. parity = t ^ _rotl(t, 6) ^ _rotl(t, 12) ^ _rotl(t, 18) ^ _rotl(t, 24); parity = parity & 0x3F; if (parity == (beidouword & 0x3F)) return (true); else return (false); } void beidou_b1i_telemetry_decoder_cc::set_satellite(const Gnss_Satellite &satellite) { d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite; d_BEIDOU_FSM.i_satellite_PRN = d_satellite.get_PRN(); DLOG(INFO) << "Navigation Satellite set to " << d_satellite; } void beidou_b1i_telemetry_decoder_cc::set_channel(int channel) { d_channel = channel; d_BEIDOU_FSM.i_channel_ID = channel; DLOG(INFO) << "Navigation channel set to " << channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename = "telemetry"; d_dump_filename.append(boost::lexical_cast(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void beidou_b1i_telemetry_decoder_cc::decode_word(int word_counter, boost::circular_buffer *d_bit_buffer, unsigned int& d_BEIDOU_frame_4bytes) { //std::cout << word_counter << std::endl; signed int firstBranch[15]; signed int secondBranch[15]; d_BEIDOU_frame_4bytes = 0; if (word_counter == 1) { for (unsigned int i = 0; i < 15 ; i++) { if (d_bit_buffer->at(i) == 1) { d_BEIDOU_frame_4bytes++; } d_BEIDOU_frame_4bytes <<= 1; } for (unsigned int i = 15; i < 30 ; i++) { if (d_bit_buffer->at(i) == 1) { d_BEIDOU_frame_4bytes++; } d_BEIDOU_frame_4bytes <<= 1; } d_BEIDOU_frame_4bytes >>= 1; } else { for (unsigned int i = 0; i < 30 ; i = i + 2) { firstBranch[i/2] = d_bit_buffer->at(i); secondBranch[i/2] = d_bit_buffer->at(i + 1); } for (unsigned int i = 0; i < 11 ; i++) { if (firstBranch[i] == 1) { d_BEIDOU_frame_4bytes++; } d_BEIDOU_frame_4bytes <<= 1;; } for (unsigned int i = 0; i < 11 ; i++) { if (secondBranch[i] == 1) { d_BEIDOU_frame_4bytes++; } d_BEIDOU_frame_4bytes <<= 1;; } for (unsigned int i = 11; i < 15 ; i++) { if (firstBranch[i] == 1) { d_BEIDOU_frame_4bytes++; } d_BEIDOU_frame_4bytes <<= 1;; } for (unsigned int i = 11; i < 15 ; i++) { if (secondBranch[i] == 1) { d_BEIDOU_frame_4bytes++; } d_BEIDOU_frame_4bytes <<= 1;; } d_BEIDOU_frame_4bytes >>= 1; } for (unsigned int i = 0; i < d_bit_buffer->size() ; i++) { std::cout << d_bit_buffer->at(i); } std::cout << std::endl; // std::cout << d_BEIDOU_frame_4bytes << std::endl; } int beidou_b1i_telemetry_decoder_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int corr_value = 0; int preamble_diff_ms = 0; int corr_NH = 0; Gnss_Synchro **out = reinterpret_cast(&output_items[0]); // Get the output buffer pointer const Gnss_Synchro **in = reinterpret_cast(&input_items[0]); // Get the input buffer pointer new_sym = false; Gnss_Synchro current_symbol; //structure to save the synchronization information and send the output object to the next block //1. Copy the current tracking output current_symbol = in[0][0]; double current_time_samples = current_symbol.Tracking_sample_counter; double current_samples_fs = current_symbol.fs; int symbol_value = 0; bool Flag_valid_symbol_output = false; d_symbol_nh_history.push_back(current_symbol.Prompt_I); //add new symbol to the symbol queue consume_each(1); if (d_symbol_nh_history.size() == BEIDOU_B1I_NH_CODE_LENGTH) { for (int i = 0; i < BEIDOU_B1I_NH_CODE_LENGTH; i++) { if ((bits_NH[i] * d_symbol_nh_history.at(i)) > 0.0) { corr_NH += 1; } else { corr_NH -= 1; } } if (abs(corr_NH) == BEIDOU_B1I_NH_CODE_LENGTH) { sync_NH = true; if (corr_NH > 0) { symbol_value = 1; } else { symbol_value = -1; } // std::cout << "SUCCESSFUL NH CORRELATION" << std::endl; d_symbol_history.push_back(symbol_value); new_sym = true; d_symbol_nh_history.clear(); } else { d_symbol_nh_history.pop_front(); sync_NH = false; new_sym = false; } } if ((d_symbol_history.size() >= BEIDOU_B1I_PREAMBLE_LENGTH_BITS) and (d_make_correlation or !d_flag_frame_sync)) { //******* preamble correlation ******** for (unsigned int i = 0; i < BEIDOU_B1I_PREAMBLE_LENGTH_BITS; i++) { if (d_symbol_history.at(i) < 0) // symbols clipping { corr_value -= d_preambles_symbols[i]; } else { corr_value += d_preambles_symbols[i]; } } //std::cout << corr_value << std::endl; if (std::abs(corr_value) >= BEIDOU_B1I_PREAMBLE_LENGTH_BITS) { /* for (unsigned int i = 0; i < d_symbol_history.size() ; i++) { std::cout << d_symbol_history.at(i); } std::cout << std::endl; */ // std::cout << "SUCCESSFUL PREAMBLE CORRELATION" << std::endl; d_symbol_history.clear(); d_symbol_counter_corr++; } } /*if (new_sym and ) { flag_new_cnav_frame = beidou_nav_msg_decoder_add_symbol(&d_cnav_decoder, symbol_clip, &msg, &delay); new_sym = false; }*/ unsigned int required_symbols = BEIDOU_B1I_PREAMBLE_LENGTH_SYMBOLS; d_flag_preamble = false; //******* frame sync ****************** if (std::abs(corr_value) == BEIDOU_B1I_PREAMBLE_LENGTH_BITS) { // std::cout << "FRAME SYNC" << std::endl; //TODO: Rewrite with state machine if (d_stat == 0) { // std::cout << "STATE MACHINE" << std::endl; d_BEIDOU_FSM.Event_beidou_word_preamble(); //record the preamble sample stamp d_preamble_time_samples = current_time_samples; // record the preamble sample stamp DLOG(INFO) << "Preamble detection for SAT " << this->d_satellite << "current_time_samples=" << current_time_samples; //sync the symbol to bits integrator d_symbol_accumulator = 0; d_symbol_accumulator_counter = 0; d_stat = 1; // enter into frame pre-detection status } else if (d_stat == 1) //check 6 seconds of preamble separation { // std::cout << "6 SECONDS" << std::endl; preamble_diff_ms = std::round(((static_cast(current_time_samples) - d_preamble_time_samples) / static_cast(current_samples_fs)) * 1000.0); if (std::abs(preamble_diff_ms - BEIDOU_SUBFRAME_MS) < 1) { std::cout << "Preamble confirmation for SAT" << std::endl; DLOG(INFO) << "Preamble confirmation for SAT " << this->d_satellite; d_BEIDOU_FSM.Event_beidou_word_preamble(); d_flag_preamble = true; d_make_correlation = false; d_symbol_counter_corr = 0; d_preamble_time_samples = current_time_samples; // record the PRN start sample index associated to the preamble if (!d_flag_frame_sync) { d_flag_frame_sync = true; if (corr_value < 0) { flag_PLL_180_deg_phase_locked = true; // PLL is locked to opposite phase! DLOG(INFO) << " PLL in opposite phase for Sat " << this->d_satellite.get_PRN(); } else { flag_PLL_180_deg_phase_locked = false; } DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at " << static_cast(d_preamble_time_samples) / static_cast(current_samples_fs) << " [s]"; } } d_frame_bit_index = 11; d_symbol_history.clear(); for (int i = 0; i < BEIDOU_B1I_PREAMBLE_LENGTH_BITS; i++) { d_bit_buffer.push_back(d_preambles_symbols[i]); } word_number = 0; } } else { d_symbol_counter_corr++; if (d_symbol_counter_corr > (BEIDOU_SUBFRAME_MS - BEIDOU_B1I_TELEMETRY_SYMBOLS_PER_BIT)) { d_make_correlation = true; } if (d_stat == 1) { preamble_diff_ms = round(((static_cast(current_time_samples) - static_cast(d_preamble_time_samples)) / static_cast(current_samples_fs)) * 1000.0); if (preamble_diff_ms > BEIDOU_SUBFRAME_MS + 1) { DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms; d_stat = 0; //lost of frame sync d_flag_frame_sync = false; flag_TOW_set = false; d_make_correlation = true; d_symbol_counter_corr = 0; } } } if (d_flag_frame_sync and new_sym) { // std::cout << symbol_value << std::endl; if (flag_PLL_180_deg_phase_locked) { d_bit_buffer.push_back(-symbol_value); } else { d_bit_buffer.push_back(symbol_value); } //******* bits to words ****** d_frame_bit_index++; if (d_frame_bit_index == 30) { word_number++; beidou_b1i_telemetry_decoder_cc::decode_word(word_number, &d_bit_buffer, d_BEIDOU_frame_4bytes); // std::cout << d_BEIDOU_frame_4bytes << std::endl; d_bit_buffer.clear(); d_frame_bit_index = 0; memcpy(&d_BEIDOU_FSM.d_BEIDOU_frame_4bytes, &d_BEIDOU_frame_4bytes, sizeof(char) * 4); //d_BEIDOU_FSM.d_preamble_time_ms = d_preamble_time_seconds * 1000.0; d_BEIDOU_FSM.Event_beidou_word_valid(); // send TLM data to PVT using asynchronous message queues if (d_BEIDOU_FSM.d_flag_new_subframe == true) { switch (d_BEIDOU_FSM.d_subframe_ID) { case 3: //we have a new set of ephemeris data for the current SV if (d_BEIDOU_FSM.d_nav.satellite_validation() == true) { // get ephemeris object for this SV (mandatory) std::shared_ptr tmp_obj = std::make_shared(d_BEIDOU_FSM.d_nav.get_ephemeris()); this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj)); } break; case 4: // Possible IONOSPHERE and UTC model update (page 18) if (d_BEIDOU_FSM.d_nav.flag_iono_valid == true) { std::shared_ptr tmp_obj = std::make_shared(d_BEIDOU_FSM.d_nav.get_iono()); this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj)); } if (d_BEIDOU_FSM.d_nav.flag_utc_model_valid == true) { std::shared_ptr tmp_obj = std::make_shared(d_BEIDOU_FSM.d_nav.get_utc_model()); this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj)); } break; case 5: // get almanac (if available) //TODO: implement almanac reader in navigation_message break; default: break; } d_BEIDOU_FSM.clear_flag_new_subframe(); d_flag_new_tow_available = true; } } } //2. Add the telemetry decoder information if (this->d_flag_preamble == true and d_flag_new_tow_available == true) { d_TOW_at_current_symbol_ms = static_cast(d_BEIDOU_FSM.d_nav.d_SOW) * 1000 + BEIDOU_B1I_CODE_PERIOD_MS + BEIDOU_B1I_PREAMBLE_DURATION_MS; d_TOW_at_Preamble_ms = d_TOW_at_current_symbol_ms; flag_TOW_set = true; d_flag_new_tow_available = false; } else { d_TOW_at_current_symbol_ms += BEIDOU_B1I_CODE_PERIOD_MS; } current_symbol.TOW_at_current_symbol_ms = d_TOW_at_current_symbol_ms; current_symbol.Flag_valid_word = flag_TOW_set; if (flag_PLL_180_deg_phase_locked == true) { //correct the accumulated phase for the Costas loop phase shift, if required current_symbol.Carrier_phase_rads += BEIDOU_PI; } if (d_dump == true) { // MULTIPLEXED FILE RECORDING - Record results to file try { double tmp_double; unsigned long int tmp_ulong_int; tmp_double = static_cast(d_TOW_at_current_symbol_ms) / 1000.0; d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); tmp_ulong_int = current_symbol.Tracking_sample_counter; d_dump_file.write(reinterpret_cast(&tmp_ulong_int), sizeof(unsigned long int)); tmp_double = static_cast(d_TOW_at_Preamble_ms) * 1000.0; d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing observables dump file " << e.what(); } } //3. Make the output (copy the object contents to the GNURadio reserved memory) *out[0] = current_symbol; return 1; }