/*! * \file vtl_engine.h * \brief Class that implements a Vector Tracking Loop (VTL) Kalman filter engine * \author Javier Arribas, 2022. jarribas(at)cttc.es * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2022 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "vtl_engine.h" #include "iostream" using namespace std; Vtl_Engine::Vtl_Engine() { } Vtl_Engine::~Vtl_Engine() { } bool Vtl_Engine::vtl_loop(Vtl_Data new_data) { //TODO: Implement main VTL loop here using arma::as_scalar; // ################## Kalman filter initialization ###################################### // covariances (static) kf_P_x = arma::eye(8, 8); //TODO: use a real value. kf_x = arma::zeros(8, 1); kf_R = arma::zeros(2*new_data.sat_number, 2*new_data.sat_number); double kf_dt=1e-1; kf_Q = arma::zeros(8, 8); kf_F = arma::zeros(8, 8); kf_F(0, 0) = 1.0; kf_F(0, 3) = kf_dt; kf_F(1, 1) = 1.0; kf_F(1, 4) = kf_dt; kf_F(2, 2) = 1.0; kf_F(2, 5) = kf_dt; kf_F(3, 3) = 1.0; kf_F(4, 4) = 1.0; kf_F(5, 5) = 1.0; kf_F(6, 6) = 1.0; kf_F(6, 7) = kf_dt; kf_F(7, 7) = 1.0; kf_H = arma::zeros(8, 2*new_data.sat_number); kf_x = arma::zeros(8, 1); kf_y = arma::zeros(2*new_data.sat_number, 1); kf_yerr = arma::zeros(2*new_data.sat_number, 1); kf_xerr = arma::zeros(8, 1); kf_S = arma::zeros(2*new_data.sat_number, 2*new_data.sat_number); // kf_P_y innovation covariance matrix // ################## Kalman Tracking ###################################### // receiver solution from rtklib_solver kf_x(0)=new_data.rx_p(0); kf_x(1)=new_data.rx_p(1); kf_x(2)=new_data.rx_p(2); kf_x(3)=new_data.rx_v(0); kf_x(4)=new_data.rx_v(1); kf_x(5)=new_data.rx_v(2); kf_x(6)=new_data.rx_dts(0); kf_x(7)=new_data.rx_dts(1); for (int32_t i = 0; i < 8; i++) // State error Covariance Matrix Q (PVT) { // It is diagonal 8x8 matrix kf_Q(i, i) = new_data.rx_pvt_var(i); //careful, values for V and T could not be adecuate. } // Kalman state prediction (time update) //kf_x.print(" KF RTKlib STATE"); new_data.kf_state=kf_x; kf_x = kf_F * kf_x; // state prediction kf_P_x= kf_F * kf_P_x * kf_F.t() + kf_Q; // state error covariance prediction //from error state variables to variables // From state variables definition // TODO: cast to type properly x_u=kf_x(0); y_u=kf_x(1); z_u=kf_x(2); xDot_u=kf_x(3); yDot_u=kf_x(4); zDot_u=kf_x(5); cdeltat_u=kf_x(6)*SPEED_OF_LIGHT_M_S; cdeltatDot_u=kf_x(7)*SPEED_OF_LIGHT_M_S; d = arma::zeros(new_data.sat_number, 1); rho_pri = arma::zeros(new_data.sat_number, 1); rhoDot_pri = arma::zeros(new_data.sat_number, 1); a_x = arma::zeros(new_data.sat_number, 1); a_y = arma::zeros(new_data.sat_number, 1); a_z = arma::zeros(new_data.sat_number, 1); for (int32_t i = 0; i < new_data.sat_number; i++) //neccesary quantities { //d(i) is the distance sat(i) to receiver d(i)=(new_data.sat_p(i, 0)-x_u)*(new_data.sat_p(i, 0)-x_u); d(i)=d(i)+(new_data.sat_p(i, 1)-y_u)*(new_data.sat_p(i, 1)-y_u); d(i)=d(i)+(new_data.sat_p(i, 2)-z_u)*(new_data.sat_p(i, 2)-z_u); d(i)=sqrt(d(i)); //compute pseudorange estimation rho_pri(i)=d(i)+cdeltat_u; //compute LOS sat-receiver vector components a_x(i)=-(new_data.sat_p(i, 0)-x_u)/d(i); a_y(i)=-(new_data.sat_p(i, 1)-y_u)/d(i); a_z(i)=-(new_data.sat_p(i, 2)-z_u)/d(i); new_data.sat_LOS(i,0)=a_x(i); new_data.sat_LOS(i,1)=a_y(i); new_data.sat_LOS(i,2)=a_z(i); //compute pseudorange rate estimation rhoDot_pri(i)=(new_data.sat_v(i, 0)-xDot_u)*a_x(i)+(new_data.sat_v(i, 1)-yDot_u)*a_y(i)+(new_data.sat_v(i, 2)-zDot_u)*a_z(i)+cdeltatDot_u; } kf_H = arma::zeros(2*new_data.sat_number,8); for (int32_t i = 0; i < new_data.sat_number; i++) // Measurement matrix H assembling { // It has 8 columns (8 states) and 2*NSat rows (NSat psudorange error;NSat pseudo range rate error) kf_H(i, 0) = a_x(i); kf_H(i, 1) = a_y(i); kf_H(i, 2) = a_z(i); kf_H(i, 6) = 1.0; kf_H(i+new_data.sat_number, 3) = a_x(i); kf_H(i+new_data.sat_number, 4) = a_y(i); kf_H(i+new_data.sat_number, 5) = a_z(i); kf_H(i+new_data.sat_number, 7) = 1.0; } // Kalman estimation (measurement update) for (int32_t i = 0; i < new_data.sat_number; i++) // Measurement vector { //kf_y(i) = new_data.pr_m(i); // i-Satellite //kf_y(i+new_data.sat_number) = rhoDot_pri(i)/Lambda_GPS_L1; // i-Satellite kf_yerr(i)=new_data.pr_m(i)-rho_pri(i);//-0.000157*SPEED_OF_LIGHT_M_S; kf_yerr(i+new_data.sat_number)=(new_data.doppler_hz(i)*Lambda_GPS_L1+cdeltatDot_u)-rhoDot_pri(i); } kf_yerr.print("KF measurement vector difference"); // DOUBLES DIFFERENCES // kf_yerr = arma::zeros(2*new_data.sat_number, 1); // for (int32_t i = 1; i < new_data.sat_number; i++) // Measurement vector // { // kf_y(i)=new_data.pr_m(i)-new_data.pr_m(i-1); // kf_yerr(i)=kf_y(i)-(rho_pri(i)+rho_pri(i-1)); // kf_y(i+new_data.sat_number)=(rhoDot_pri(i)-rhoDot_pri(i-1))/Lambda_GPS_L1; // kf_yerr(i+new_data.sat_number)=kf_y(i+new_data.sat_number)-(new_data.doppler_hz(i)-new_data.doppler_hz(i-1)); // } // kf_yerr.print("DOUBLES DIFFERENCES"); for (int32_t i = 0; i < new_data.sat_number; i++) // Measurement error Covariance Matrix R assembling { // It is diagonal 2*NSatellite x 2*NSatellite (NSat psudorange error;NSat pseudo range rate error) kf_R(i, i) = 0.1; //TODO: fill with real values. kf_R(i+new_data.sat_number, i+new_data.sat_number) = 1.0; } // Kalman filter update step kf_S = kf_H * kf_P_x* kf_H.t() + kf_R; // innovation covariance matrix (S) kf_K = (kf_P_x * kf_H.t()) * arma::inv(kf_S); // Kalman gain kf_xerr = kf_K * (kf_yerr); // Error state estimation kf_x = kf_x + kf_xerr; // updated state estimation (a priori + error) kf_P_x = (arma::eye(size(kf_P_x)) - kf_K * kf_H) * kf_P_x; // update state estimation error covariance matrix // States related tu USER clock adjust from m/s to s (by /SPEED_OF_LIGHT_M_S) kf_x(6) =kf_x(6) /SPEED_OF_LIGHT_M_S; kf_x(7) =kf_x(7) /SPEED_OF_LIGHT_M_S; new_data.kf_state.print(" KF RTKlib STATE"); cout << " KF posteriori STATE diference" << kf_x-new_data.kf_state; cout << " KF posteriori STATE diference %" << (kf_x-new_data.kf_state)/new_data.kf_state*100; // // ################## Geometric Transformation ###################################### // // x_u=kf_x(0); // // y_u=kf_x(1); // // z_u=kf_x(2); // // xDot_u=kf_x(3); // // yDot_u=kf_x(4); // // zDot_u=kf_x(5); // // cdeltat_u=kf_x(6)*SPEED_OF_LIGHT_M_S; // // cdeltatDot_u=kf_x(7)*SPEED_OF_LIGHT_M_S; for (int32_t i = 0; i < new_data.sat_number; i++) //neccesary quantities { //d(i) is the distance sat(i) to receiver d(i)=(new_data.sat_p(i, 0)-kf_x(0))*(new_data.sat_p(i, 0)-kf_x(0)); d(i)=d(i)+(new_data.sat_p(i, 1)-kf_x(1))*(new_data.sat_p(i, 1)-kf_x(1)); d(i)=d(i)+(new_data.sat_p(i, 2)-kf_x(2))*(new_data.sat_p(i, 2)-kf_x(2)); d(i)=sqrt(d(i)); //compute pseudorange estimation rho_pri(i)=d(i)+kf_x(6)*SPEED_OF_LIGHT_M_S; //compute LOS sat-receiver vector components a_x(i)=-(new_data.sat_p(i, 0)-kf_x(0))/d(i); a_y(i)=-(new_data.sat_p(i, 1)-kf_x(1))/d(i); a_z(i)=-(new_data.sat_p(i, 2)-kf_x(2))/d(i); //compute pseudorange rate estimation rhoDot_pri(i)=(new_data.sat_v(i, 0)-kf_x(3))*a_x(i)+(new_data.sat_v(i, 1)-kf_x(4))*a_y(i)+(new_data.sat_v(i, 2)-kf_x(5))*a_z(i)+kf_x(7)*SPEED_OF_LIGHT_M_S; } kf_H = arma::zeros(2*new_data.sat_number,8); for (int32_t i = 0; i < new_data.sat_number; i++) // Measurement matrix H assembling { // It has 8 columns (8 states) and 2*NSat rows (NSat psudorange error;NSat pseudo range rate error) kf_H(i, 0) = a_x(i); kf_H(i, 1) = a_y(i); kf_H(i, 2) = a_z(i); kf_H(i, 6) = 1.0; kf_H(i+new_data.sat_number, 3) = a_x(i); kf_H(i+new_data.sat_number, 4) = a_y(i); kf_H(i+new_data.sat_number, 5) = a_z(i); kf_H(i+new_data.sat_number, 7) = 1.0; } // Re-calculate error measurement vector with the most recent data available: kf_delta_y=kf_H*kf_delta_x kf_yerr=kf_H*kf_xerr; // Filtered pseudorange error measurement (in m) AND Filtered Doppler shift measurements (in Hz): for (int32_t i = 0; i < new_data.sat_number; i++) // Measurement vector { rho_pri(i)=new_data.pr_m(i)-kf_yerr(i); // now filtered rhoDot_pri(i)=(new_data.doppler_hz(i)*Lambda_GPS_L1+cdeltatDot_u)-kf_yerr(i+new_data.sat_number); // now filtered // TO DO: convert rhoDot_pri to doppler shift! // Doppler shift defined as pseudorange rate measurement divided by the negative of carrier wavelength. rhoDot_pri(i)=-rhoDot_pri(i)/Lambda_GPS_L1; } //TODO: Fill the tracking commands outputs // Notice: keep the same satellite order as in the Vtl_Data matrices // sample code TrackingCmd trk_cmd; trk_cmd.carrier_freq_hz = 0; trk_cmd.carrier_freq_rate_hz_s = 0; trk_cmd.code_freq_chips = 0; trk_cmd.enable_carrier_nco_cmd = true; trk_cmd.enable_code_nco_cmd = true; trk_cmd.sample_counter = new_data.sample_counter; trk_cmd_outs.push_back(trk_cmd); new_data.debug_print(); return true; } void Vtl_Engine::reset() { //TODO } void Vtl_Engine::debug_print() { //TODO } void Vtl_Engine::configure(Vtl_Conf config_) { config = config_; //TODO: initialize internal variables }