/*! * \file beidou_b3i_signal_processing.cc * \brief This class implements various functions for BeiDou B1I signal * \author Damian Miralles, 2019. dmiralles2009@gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "beidou_b3i_signal_processing.h" auto auxCeil = [](float x) { return static_cast(static_cast((x) + 1)); }; void beidou_b3i_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shift) { const unsigned int _code_length = 10230; bool G1[_code_length]; bool G2[_code_length]; std::array G1_register = {{1,1,1,1,1,1,1,1,1,1,1,1,1}}; std::array G2_register = {{1,1,1,1,1,1,1,1,1,1,1,1,1}}; std::array G1_register_reset = {{0,0,1,1,1,1,1,1,1,1,1,1,1}}; bool feedback1, feedback2, aux; uint32_t lcv, lcv2, delay; int32_t prn_idx = _prn - 1; std::array, 63> G2_register_shifted = {{ {{1,0,1,0,1,1,1,1,1,1,1,1,1,}}, {{1,1,1,1,0,0,0,1,0,1,0,1,1,}}, {{1,0,1,1,1,1,0,0,0,1,0,1,0,}}, {{1,1,1,1,1,1,1,1,1,1,0,1,1,}}, {{1,1,0,0,1,0,0,0,1,1,1,1,1,}}, {{1,0,0,1,0,0,1,1,0,0,1,0,0,}}, {{1,1,1,1,1,1,1,0,1,0,0,1,0,}}, {{1,1,1,0,1,1,1,1,1,1,1,0,1,}}, {{1,0,1,0,0,0,0,0,0,0,0,1,0,}}, {{0,0,1,0,0,0,0,0,1,1,0,1,1,}}, {{1,1,1,0,1,0,1,1,1,0,0,0,0,}}, {{0,0,1,0,1,1,0,0,1,1,1,1,0,}}, {{0,1,1,0,0,1,0,0,1,0,1,0,1,}}, {{0,1,1,1,0,0,0,1,0,0,1,1,0,}}, {{1,0,0,0,1,1,0,0,0,1,0,0,1,}}, {{1,1,1,0,0,0,1,1,1,1,1,0,0,}}, {{0,0,1,0,0,1,1,0,0,0,1,0,1,}}, {{0,0,0,0,0,1,1,1,0,1,1,0,0,}}, {{1,0,0,0,1,0,1,0,1,0,1,1,1,}}, {{0,0,0,1,0,1,1,0,1,1,1,1,0,}}, {{0,0,1,0,0,0,0,1,0,1,1,0,1,}}, {{0,0,1,0,1,1,0,0,0,1,0,1,0,}}, {{0,0,0,1,0,1,1,0,0,1,1,1,1,}}, {{0,0,1,1,0,0,1,1,0,0,0,1,0,}}, {{0,0,1,1,1,0,1,0,0,1,0,0,0,}}, {{0,1,0,0,1,0,0,1,0,1,0,0,1,}}, {{1,0,1,1,0,1,1,0,1,0,0,1,1,}}, {{1,0,1,0,1,1,1,1,0,0,0,1,0,}}, {{0,0,0,1,0,1,1,1,1,0,1,0,1,}}, {{0,1,1,1,1,1,1,1,1,1,1,1,1,}}, {{0,1,1,0,1,1,0,0,0,1,1,1,1,}}, {{1,0,1,0,1,1,0,0,0,1,0,0,1,}}, {{1,0,0,1,0,1,0,1,0,1,0,1,1,}}, {{1,1,0,0,1,1,0,1,0,0,1,0,1,}}, {{1,1,0,1,0,0,1,0,1,1,1,0,1,}}, {{1,1,1,1,1,0,1,1,1,0,1,0,0,}}, {{0,0,1,0,1,0,1,1,0,0,1,1,1,}}, {{1,1,1,0,1,0,0,0,1,0,0,0,0,}}, {{1,1,0,1,1,1,0,0,1,0,0,0,0,}}, {{1,1,0,1,0,1,1,0,0,1,1,1,0,}}, {{1,0,0,0,0,0,0,1,1,0,1,0,0,}}, {{0,1,0,1,1,1,1,0,1,1,0,0,1,}}, {{0,1,1,0,1,1,0,1,1,1,1,0,0,}}, {{1,1,0,1,0,0,1,1,1,0,0,0,1,}}, {{0,0,1,1,1,0,0,1,0,0,0,1,0,}}, {{0,1,0,1,0,1,1,0,0,0,1,0,1,}}, {{1,0,0,1,1,1,1,1,0,0,1,1,0,}}, {{1,1,1,1,1,0,1,0,0,1,0,0,0,}}, {{0,0,0,0,1,0,1,0,0,1,0,0,1,}}, {{1,0,0,0,0,1,0,1,0,1,1,0,0,}}, {{1,1,1,1,0,0,1,0,0,1,1,0,0,}}, {{0,1,0,0,1,1,0,0,0,1,1,1,1,}}, {{0,0,0,0,0,0,0,0,1,1,0,0,0,}}, {{1,0,0,0,0,0,0,0,0,0,1,0,0,}}, {{0,0,1,1,0,1,0,1,0,0,1,1,0,}}, {{1,0,1,1,0,0,1,0,0,0,1,1,0,}}, {{0,1,1,1,0,0,1,1,1,1,0,0,0,}}, {{0,0,1,0,1,1,1,0,0,1,0,1,0,}}, {{1,1,0,0,1,1,1,1,1,0,1,1,0,}}, {{1,0,0,1,0,0,1,0,0,0,1,0,1,}}, {{0,1,1,1,0,0,0,1,0,0,0,0,0,}}, {{0,0,1,1,0,0,1,0,0,0,0,1,0,}}, {{0,0,1,0,0,0,1,0,0,1,1,1,0,}}}}; // A simple error check if ((prn_idx < 0) || (prn_idx > 63)) return; // Assign shifted G2 register based on prn number G2_register = G2_register_shifted[prn_idx]; std::reverse(G2_register.begin(), G2_register.end()) ; // Generate G1 and G2 Register for (lcv = 0; lcv < _code_length; lcv++) { G1[lcv] = G1_register[0]; G2[lcv] = G2_register[0]; //feedback1 = (test_G1_register[0]+test_G1_register[2]+test_G1_register[3]+test_G1_register[12]) & 0x1; feedback1 = (G1_register[0]+G1_register[9]+G1_register[10]+G1_register[12]) & 0x01; feedback2 = (G2_register[0]+G2_register[1]+G2_register[3]+G2_register[4]+ G2_register[6]+G2_register[7]+G2_register[8]+G2_register[12]) & 0x01; for (lcv2 = 0; lcv2 < 12; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; G2_register[lcv2] = G2_register[lcv2 + 1]; } G1_register[12] = feedback1; G2_register[12] = feedback2; // Reset G1 register if sequence found if(G1_register == G1_register_reset) { G1_register = {{1,1,1,1,1,1,1,1,1,1,1,1,1}}; } } delay = _code_length; delay += _chip_shift; delay %= _code_length; /* Generate PRN from G1 and G2 Registers */ for (lcv = 0; lcv < _code_length; lcv++) { aux = (G1[(lcv + _chip_shift) % _code_length] + G2[delay]) & 0x01; if (aux == true) { _dest[lcv] = 1; } else { _dest[lcv] = -1; } delay++; delay %= _code_length; } } void beidou_b3i_code_gen_float(float* _dest, signed int _prn, unsigned int _chip_shift) { unsigned int _code_length = 10230; int b3i_code_int[10230]; beidou_b3i_code_gen_int(b3i_code_int, _prn, _chip_shift); for (unsigned int ii = 0; ii < _code_length; ++ii) { _dest[ii] = static_cast(b3i_code_int[ii]); } } void beidou_b3i_code_gen_complex(std::complex* _dest, signed int _prn, unsigned int _chip_shift) { unsigned int _code_length = 10230; int b3i_code_int[10230]; beidou_b3i_code_gen_int(b3i_code_int, _prn, _chip_shift); for (unsigned int ii = 0; ii < _code_length; ++ii) { _dest[ii] = std::complex(static_cast(b3i_code_int[ii]), 0.0f); } } void beidou_b3i_code_gen_complex_sampled(std::complex* _dest, unsigned int _prn, int _fs, unsigned int _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book std::complex _code[10230]; signed int _samplesPerCode, _codeValueIndex; float _ts; float _tc; float aux; const signed int _codeFreqBasis = 10230000; //Hz const signed int _codeLength = 10230; //--- Find number of samples per spreading code ---------------------------- _samplesPerCode = static_cast(static_cast(_fs) / static_cast(_codeFreqBasis / _codeLength)); //--- Find time constants -------------------------------------------------- _ts = 1.0 / static_cast(_fs); // Sampling period in sec _tc = 1.0 / static_cast(_codeFreqBasis); // C/A chip period in sec beidou_b3i_code_gen_complex(_code, _prn, _chip_shift); //generate C/A code 1 sample per chip for (signed int i = 0; i < _samplesPerCode; i++) { //=== Digitizing ======================================================= //--- Make index array to read C/A code values ------------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). // _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1; aux = (_ts * (i + 1)) / _tc; _codeValueIndex = auxCeil(aux) - 1; //--- Make the digitized version of the C/A code ----------------------- // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == _samplesPerCode - 1) { //--- Correct the last index (due to number rounding issues) ----------- _dest[i] = _code[_codeLength - 1]; } else { _dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample } } }