/*! * \file galileo_e1_pcps_ambiguous_acquisition_gsoc2013_test.cc * \brief This class implements an acquisition test for * GalileoE1PcpsAmbiguousAcquisition class. * \author Marc Molina, 2013. marc.molina.pena(at)gmail.com * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include "gnss_block_interface.h" #include "in_memory_configuration.h" #include "gnss_synchro.h" #include "galileo_e1_pcps_ambiguous_acquisition.h" #include "signal_generator.h" #include "signal_generator_c.h" #include "fir_filter.h" #include "gen_signal_source.h" #include "gnss_sdr_valve.h" class GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test: public ::testing::Test { protected: GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test() { factory = std::make_shared(); item_size = sizeof(gr_complex); stop = false; message = 0; gnss_synchro = Gnss_Synchro(); } ~GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test() { } void init(); void config_1(); void config_2(); void start_queue(); void wait_message(); void process_message(); void stop_queue(); gr::msg_queue::sptr queue; gr::top_block_sptr top_block; std::shared_ptr acquisition; std::shared_ptr factory; std::shared_ptr config; Gnss_Synchro gnss_synchro; size_t item_size; bool stop; int message; boost::thread ch_thread; unsigned int integration_time_ms = 0; unsigned int fs_in = 0; double expected_delay_chips = 0.0; double expected_doppler_hz = 0.0; float max_doppler_error_hz = 0; float max_delay_error_chips = 0; unsigned int num_of_realizations = 0; unsigned int realization_counter = 0; unsigned int detection_counter = 0; unsigned int correct_estimation_counter = 0; unsigned int acquired_samples = 0; unsigned int mean_acq_time_us = 0; double mse_doppler = 0.0; double mse_delay = 0.0; double Pd = 0.0; double Pfa_p = 0.0; double Pfa_a = 0.0; }; void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::init() { message = 0; realization_counter = 0; detection_counter = 0; correct_estimation_counter = 0; acquired_samples = 0; mse_doppler = 0; mse_delay = 0; mean_acq_time_us = 0; Pd = 0; Pfa_p = 0; Pfa_a = 0; } void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_1() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = 'E'; std::string signal = "1C"; signal.copy(gnss_synchro.Signal, 2, 0); integration_time_ms = 4; fs_in = 4e6; expected_delay_chips = 600; expected_doppler_hz = 750; max_doppler_error_hz = 2/(3*integration_time_ms*1e-3); max_delay_error_chips = 0.50; num_of_realizations = 1; config = std::make_shared(); config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.item_type", "gr_complex"); config->set_property("SignalSource.num_satellites", "1"); config->set_property("SignalSource.system_0", "E"); config->set_property("SignalSource.PRN_0", "10"); config->set_property("SignalSource.CN0_dB_0", "44"); config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); config->set_property("SignalSource.noise_flag", "false"); config->set_property("SignalSource.data_flag", "false"); config->set_property("SignalSource.BW_BB", "0.97"); config->set_property("InputFilter.implementation", "Fir_Filter"); config->set_property("InputFilter.input_item_type", "gr_complex"); config->set_property("InputFilter.output_item_type", "gr_complex"); config->set_property("InputFilter.taps_item_type", "float"); config->set_property("InputFilter.number_of_taps", "11"); config->set_property("InputFilter.number_of_bands", "2"); config->set_property("InputFilter.band1_begin", "0.0"); config->set_property("InputFilter.band1_end", "0.97"); config->set_property("InputFilter.band2_begin", "0.98"); config->set_property("InputFilter.band2_end", "1.0"); config->set_property("InputFilter.ampl1_begin", "1.0"); config->set_property("InputFilter.ampl1_end", "1.0"); config->set_property("InputFilter.ampl2_begin", "0.0"); config->set_property("InputFilter.ampl2_end", "0.0"); config->set_property("InputFilter.band1_error", "1.0"); config->set_property("InputFilter.band2_error", "1.0"); config->set_property("InputFilter.filter_type", "bandpass"); config->set_property("InputFilter.grid_density", "16"); config->set_property("Acquisition.item_type", "gr_complex"); config->set_property("Acquisition.if", "0"); config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(integration_time_ms)); config->set_property("Acquisition.max_dwells", "1"); config->set_property("Acquisition.bit_transition_flag","false"); config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition"); config->set_property("Acquisition.threshold", "0.1"); config->set_property("Acquisition.doppler_max", "10000"); config->set_property("Acquisition.doppler_step", "250"); config->set_property("Acquisition.dump", "false"); } void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = 'E'; std::string signal = "1C"; signal.copy(gnss_synchro.Signal, 2, 0); integration_time_ms = 4; fs_in = 4e6; expected_delay_chips = 600; expected_doppler_hz = 750; max_doppler_error_hz = 2/(3*integration_time_ms*1e-3); max_delay_error_chips = 0.50; num_of_realizations = 100; config = std::make_shared(); config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.item_type", "gr_complex"); config->set_property("SignalSource.num_satellites", "4"); config->set_property("SignalSource.system_0", "E"); config->set_property("SignalSource.PRN_0", "10"); config->set_property("SignalSource.CN0_dB_0", "44"); config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); config->set_property("SignalSource.system_1", "E"); config->set_property("SignalSource.PRN_1", "15"); config->set_property("SignalSource.CN0_dB_1", "44"); config->set_property("SignalSource.doppler_Hz_1", "1000"); config->set_property("SignalSource.delay_chips_1", "100"); config->set_property("SignalSource.system_2", "E"); config->set_property("SignalSource.PRN_2", "21"); config->set_property("SignalSource.CN0_dB_2", "44"); config->set_property("SignalSource.doppler_Hz_2", "2000"); config->set_property("SignalSource.delay_chips_2", "200"); config->set_property("SignalSource.system_3", "E"); config->set_property("SignalSource.PRN_3", "22"); config->set_property("SignalSource.CN0_dB_3", "44"); config->set_property("SignalSource.doppler_Hz_3", "3000"); config->set_property("SignalSource.delay_chips_3", "300"); config->set_property("SignalSource.noise_flag", "true"); config->set_property("SignalSource.data_flag", "true"); config->set_property("SignalSource.BW_BB", "0.97"); config->set_property("InputFilter.implementation", "Fir_Filter"); config->set_property("InputFilter.input_item_type", "gr_complex"); config->set_property("InputFilter.output_item_type", "gr_complex"); config->set_property("InputFilter.taps_item_type", "float"); config->set_property("InputFilter.number_of_taps", "11"); config->set_property("InputFilter.number_of_bands", "2"); config->set_property("InputFilter.band1_begin", "0.0"); config->set_property("InputFilter.band1_end", "0.97"); config->set_property("InputFilter.band2_begin", "0.98"); config->set_property("InputFilter.band2_end", "1.0"); config->set_property("InputFilter.ampl1_begin", "1.0"); config->set_property("InputFilter.ampl1_end", "1.0"); config->set_property("InputFilter.ampl2_begin", "0.0"); config->set_property("InputFilter.ampl2_end", "0.0"); config->set_property("InputFilter.band1_error", "1.0"); config->set_property("InputFilter.band2_error", "1.0"); config->set_property("InputFilter.filter_type", "bandpass"); config->set_property("InputFilter.grid_density", "16"); config->set_property("Acquisition.item_type", "gr_complex"); config->set_property("Acquisition.if", "0"); config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(integration_time_ms)); config->set_property("Acquisition.max_dwells", "1"); config->set_property("Acquisition.bit_transition_flag","false"); config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition"); config->set_property("Acquisition.pfa", "0.1"); config->set_property("Acquisition.doppler_max", "10000"); config->set_property("Acquisition.doppler_step", "250"); config->set_property("Acquisition.dump", "false"); } void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::start_queue() { stop = false; ch_thread = boost::thread(&GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::wait_message, this); } void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::wait_message() { struct timeval tv; long long int begin = 0; long long int end = 0; while (!stop) { acquisition->reset(); gettimeofday(&tv, NULL); begin = tv.tv_sec*1e6 + tv.tv_usec; channel_internal_queue.wait_and_pop(message); gettimeofday(&tv, NULL); end = tv.tv_sec*1e6 + tv.tv_usec; mean_acq_time_us += (end - begin); process_message(); } } void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::process_message() { if (message == 1) { detection_counter++; // The term -5 is here to correct the additional delay introduced by the FIR filter double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3)); double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); mse_delay += std::pow(delay_error_chips, 2); mse_doppler += std::pow(doppler_error_hz, 2); if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz)) { correct_estimation_counter++; } } realization_counter++; std::cout << "Progress: " << round((float)realization_counter/num_of_realizations*100) << "% \r" << std::flush; if (realization_counter == num_of_realizations) { mse_delay /= (double)num_of_realizations; mse_doppler /= (double)num_of_realizations; Pd = (double)correct_estimation_counter / (double)num_of_realizations; Pfa_a = (double)detection_counter / (double)num_of_realizations; Pfa_p = (double)(detection_counter-correct_estimation_counter) / (double)num_of_realizations; mean_acq_time_us /= (double)num_of_realizations; stop_queue(); top_block->stop(); } } void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::stop_queue() { stop = true; } TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, Instantiate) { config_1(); std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1, queue); acquisition = std::dynamic_pointer_cast(acq_); } TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ConnectAndRun) { int nsamples = floor(fs_in*integration_time_ms*1e-3); struct timeval tv; long long int begin = 0; long long int end = 0; top_block = gr::make_top_block("Acquisition test"); queue = gr::msg_queue::make(0); config_1(); std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1, queue); acquisition = std::dynamic_pointer_cast(acq_); ASSERT_NO_THROW( { acquisition->connect(top_block); boost::shared_ptr source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0)); boost::shared_ptr valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue); top_block->connect(source, 0, valve, 0); top_block->connect(valve, 0, acquisition->get_left_block(), 0); }) << "Failure connecting the blocks of acquisition test." << std::endl; EXPECT_NO_THROW( { gettimeofday(&tv, NULL); begin = tv.tv_sec*1e6 + tv.tv_usec; top_block->run(); // Start threads and wait gettimeofday(&tv, NULL); end = tv.tv_sec*1e6 + tv.tv_usec; }) << "Failure running the top_block." << std::endl; std::cout << "Processed " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl; } TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResults) { config_1(); top_block = gr::make_top_block("Acquisition test"); queue = gr::msg_queue::make(0); std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1, queue); acquisition = std::dynamic_pointer_cast(acq_); ASSERT_NO_THROW( { acquisition->set_channel(1); }) << "Failure setting channel." << std::endl; ASSERT_NO_THROW( { acquisition->set_gnss_synchro(&gnss_synchro); }) << "Failure setting gnss_synchro." << std::endl; ASSERT_NO_THROW( { acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); }) << "Failure setting doppler_max." << std::endl; ASSERT_NO_THROW( { acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500)); }) << "Failure setting doppler_step." << std::endl; ASSERT_NO_THROW( { acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); }) << "Failure setting threshold." << std::endl; ASSERT_NO_THROW( { acquisition->connect(top_block); }) << "Failure connecting acquisition to the top_block." << std::endl; acquisition->init(); ASSERT_NO_THROW( { boost::shared_ptr signal_source; SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1, queue); signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue)); signal_source->connect(top_block); top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); }) << "Failure connecting the blocks of acquisition test." << std::endl; // i = 0 --> satellite in acquisition is visible // i = 1 --> satellite in acquisition is not visible for (unsigned int i = 0; i < 2; i++) { init(); if (i == 0) { gnss_synchro.PRN = 10; // This satellite is visible } else if (i == 1) { gnss_synchro.PRN = 20; // This satellite is not visible } acquisition->set_local_code(); acquisition->set_state(1); start_queue(); EXPECT_NO_THROW( { top_block->run(); // Start threads and wait }) << "Failure running the top_block." << std::endl; stop_queue(); if (i == 0) { EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; if (message == 1) { EXPECT_EQ((unsigned int)1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation."; } } else if (i == 1) { EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL."; } ch_thread.join(); } } TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProbabilities) { config_2(); top_block = gr::make_top_block("Acquisition test"); queue = gr::msg_queue::make(0); std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1, queue); acquisition = std::dynamic_pointer_cast(acq_); ASSERT_NO_THROW( { acquisition->set_channel(1); }) << "Failure setting channel." << std::endl; ASSERT_NO_THROW( { acquisition->set_gnss_synchro(&gnss_synchro); }) << "Failure setting gnss_synchro." << std::endl; ASSERT_NO_THROW( { acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); }) << "Failure setting doppler_max." << std::endl; ASSERT_NO_THROW( { acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500)); }) << "Failure setting doppler_step." << std::endl; ASSERT_NO_THROW( { acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); }) << "Failure setting threshold." << std::endl; ASSERT_NO_THROW( { acquisition->connect(top_block); }) << "Failure connecting acquisition to the top_block." << std::endl; acquisition->init(); ASSERT_NO_THROW( { boost::shared_ptr signal_source; SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1, queue); signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue)); signal_source->connect(top_block); top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); }) << "Failure connecting the blocks of acquisition test." << std::endl; std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl; // i = 0 --> satellite in acquisition is visible (prob of detection and prob of detection with wrong estimation) // i = 1 --> satellite in acquisition is not visible (prob of false detection) for (unsigned int i = 0; i < 2; i++) { init(); if (i == 0) { gnss_synchro.PRN = 10; // This satellite is visible } else if (i == 1) { gnss_synchro.PRN = 20; // This satellite is not visible } acquisition->set_local_code(); acquisition->set_state(1); start_queue(); EXPECT_NO_THROW( { top_block->run(); // Start threads and wait }) << "Failure running the top_block." << std::endl; stop_queue(); if (i == 0) { std::cout << "Estimated probability of detection = " << Pd << std::endl; std::cout << "Estimated probability of false alarm (satellite present) = " << Pfa_p << std::endl; std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; } else if (i == 1) { std::cout << "Estimated probability of false alarm (satellite absent) = " << Pfa_a << std::endl; std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; } ch_thread.join(); } }