/*! * \file galileo_e5a_noncoherent_iq_acquisition_caf_cc.cc * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for * Galileo E5a data and pilot Signals * \author Marc Sales, 2014. marcsales92(at)gmail.com * \based on work from: * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e5a_noncoherent_iq_acquisition_caf_cc.h" #include #include #include #include #include #include "control_message_factory.h" using google::LogMessage; galileo_e5a_noncoherentIQ_acquisition_caf_cc_sptr galileo_e5a_noncoherentIQ_make_acquisition_caf_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, bool bit_transition_flag, gr::msg_queue::sptr queue, bool dump, std::string dump_filename, bool both_signal_components_, int CAF_window_hz_, int Zero_padding_) { return galileo_e5a_noncoherentIQ_acquisition_caf_cc_sptr( new galileo_e5a_noncoherentIQ_acquisition_caf_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, samples_per_code, bit_transition_flag, queue, dump, dump_filename, both_signal_components_, CAF_window_hz_, Zero_padding_)); } galileo_e5a_noncoherentIQ_acquisition_caf_cc::galileo_e5a_noncoherentIQ_acquisition_caf_cc( unsigned int sampled_ms, unsigned int max_dwells, unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, int samples_per_code, bool bit_transition_flag, gr::msg_queue::sptr queue, bool dump, std::string dump_filename, bool both_signal_components_, int CAF_window_hz_, int Zero_padding_) : gr::block("galileo_e5a_noncoherentIQ_acquisition_caf_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(0, 0, sizeof(gr_complex))) { d_sample_counter = 0; // SAMPLE COUNTER d_active = false; d_state = 0; d_queue = queue; d_freq = freq; d_fs_in = fs_in; d_samples_per_ms = samples_per_ms; d_samples_per_code = samples_per_code; d_max_dwells = max_dwells; d_well_count = 0; d_doppler_max = doppler_max; if (Zero_padding_ > 0) { d_sampled_ms = 1; } else { d_sampled_ms = sampled_ms; } d_fft_size = sampled_ms * d_samples_per_ms; d_mag = 0; d_input_power = 0.0; d_num_doppler_bins = 0; d_bit_transition_flag = bit_transition_flag; d_buffer_count = 0; d_both_signal_components = both_signal_components_; d_CAF_window_hz = CAF_window_hz_; d_inbuffer = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); d_fft_code_I_A = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); d_magnitudeIA = static_cast(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment())); if (d_both_signal_components == true) { d_fft_code_Q_A = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); d_magnitudeQA = static_cast(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment())); } else { d_fft_code_Q_A = 0; d_magnitudeQA = 0; } // IF COHERENT INTEGRATION TIME > 1 if (d_sampled_ms > 1) { d_fft_code_I_B = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); d_magnitudeIB = static_cast(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment())); if (d_both_signal_components == true) { d_fft_code_Q_B = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); d_magnitudeQB = static_cast(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment())); } else { d_fft_code_Q_B = 0; d_magnitudeQB = 0; } } else { d_fft_code_I_B = 0; d_magnitudeIB = 0; d_fft_code_Q_B = 0; d_magnitudeQB = 0; } // Direct FFT d_fft_if = new gr::fft::fft_complex(d_fft_size, true); // Inverse FFT d_ifft = new gr::fft::fft_complex(d_fft_size, false); // For dumping samples into a file d_dump = dump; d_dump_filename = dump_filename; d_doppler_resolution = 0; d_threshold = 0; d_doppler_step = 250; d_grid_doppler_wipeoffs = 0; d_gnss_synchro = 0; d_code_phase = 0; d_doppler_freq = 0; d_test_statistics = 0; d_CAF_vector = 0; d_CAF_vector_I = 0; d_CAF_vector_Q = 0; d_channel = 0; d_gr_stream_buffer = 0; } galileo_e5a_noncoherentIQ_acquisition_caf_cc::~galileo_e5a_noncoherentIQ_acquisition_caf_cc() { if (d_num_doppler_bins > 0) { for (unsigned int i = 0; i < d_num_doppler_bins; i++) { volk_free(d_grid_doppler_wipeoffs[i]); } delete[] d_grid_doppler_wipeoffs; } volk_free(d_inbuffer); volk_free(d_fft_code_I_A); volk_free(d_magnitudeIA); if (d_both_signal_components == true) { volk_free(d_fft_code_Q_A); volk_free(d_magnitudeQA); } // IF INTEGRATION TIME > 1 if (d_sampled_ms > 1) { volk_free(d_fft_code_I_B); volk_free(d_magnitudeIB); if (d_both_signal_components == true) { volk_free(d_fft_code_Q_B); volk_free(d_magnitudeQB); } } if (d_CAF_window_hz > 0) { volk_free(d_CAF_vector); volk_free(d_CAF_vector_I); if (d_both_signal_components == true) { volk_free(d_CAF_vector_Q); } } delete d_fft_if; delete d_ifft; if (d_dump) { d_dump_file.close(); } } void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_local_code(std::complex * codeI, std::complex * codeQ ) { // DATA SIGNAL // Three replicas of data primary code. CODE A: (1,1,1) memcpy(d_fft_if->get_inbuf(), codeI, sizeof(gr_complex)*d_fft_size); d_fft_if->execute(); // We need the FFT of local code //Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_I_A,d_fft_if->get_outbuf(),d_fft_size); // SAME FOR PILOT SIGNAL if (d_both_signal_components == true) { // Three replicas of pilot primary code. CODE A: (1,1,1) memcpy(d_fft_if->get_inbuf(), codeQ, sizeof(gr_complex)*d_fft_size); d_fft_if->execute(); // We need the FFT of local code //Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_Q_A,d_fft_if->get_outbuf(),d_fft_size); } // IF INTEGRATION TIME > 1 code, we need to evaluate the other possible combination // Note: max integration time allowed = 3ms (dealt in adapter) if (d_sampled_ms > 1) { // DATA CODE B: First replica is inverted (0,1,1) volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0], &codeI[0], gr_complex(-1,0), d_samples_per_code); d_fft_if->execute(); // We need the FFT of local code //Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_I_B,d_fft_if->get_outbuf(),d_fft_size); if (d_both_signal_components == true) { // PILOT CODE B: First replica is inverted (0,1,1) volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0], &codeQ[0], gr_complex(-1,0), d_samples_per_code); d_fft_if->execute(); // We need the FFT of local code //Conjugate the local code volk_32fc_conjugate_32fc(d_fft_code_Q_B,d_fft_if->get_outbuf(),d_fft_size); } } } void galileo_e5a_noncoherentIQ_acquisition_caf_cc::init() { d_gnss_synchro->Flag_valid_acquisition = false; d_gnss_synchro->Flag_valid_symbol_output = false; d_gnss_synchro->Flag_valid_pseudorange = false; d_gnss_synchro->Flag_valid_word = false; d_gnss_synchro->Flag_preamble = false; d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_mag = 0.0; d_input_power = 0.0; const double GALILEO_TWO_PI = 6.283185307179600; // Count the number of bins d_num_doppler_bins = 0; for (int doppler = static_cast(-d_doppler_max); doppler <= static_cast(d_doppler_max); doppler += d_doppler_step) { d_num_doppler_bins++; } // Create the carrier Doppler wipeoff signals d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins]; for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { d_grid_doppler_wipeoffs[doppler_index] = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment())); int doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; float phase_step_rad = GALILEO_TWO_PI * (d_freq + doppler) / static_cast(d_fs_in); float _phase[1]; _phase[0] = 0; volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index], - phase_step_rad, _phase, d_fft_size); } /* CAF Filtering to resolve doppler ambiguity. Phase and quadrature must be processed * separately before non-coherent integration */ // if (d_CAF_filter) if (d_CAF_window_hz > 0) { d_CAF_vector = static_cast(volk_malloc(d_num_doppler_bins * sizeof(float), volk_get_alignment())); d_CAF_vector_I = static_cast(volk_malloc(d_num_doppler_bins * sizeof(float), volk_get_alignment())); if (d_both_signal_components == true) { d_CAF_vector_Q = static_cast(volk_malloc(d_num_doppler_bins * sizeof(float), volk_get_alignment())); } } } void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_state(int state) { d_state = state; if (d_state == 1) { d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; } else if (d_state == 0) {} else { LOG(ERROR) << "State can only be set to 0 or 1"; } } int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items __attribute__((unused))) { /* * By J.Arribas, L.Esteve, M.Molina and M.Sales * Acquisition strategy (Kay Borre book + CFAR threshold): * 1. Compute the input signal power estimation * 2. Doppler serial search loop * 3. Perform the FFT-based circular convolution (parallel time search) * 4. OPTIONAL: CAF filter to avoid doppler ambiguity * 5. Record the maximum peak and the associated synchronization parameters * 6. Compute the test statistics and compare to the threshold * 7. Declare positive or negative acquisition using a message queue */ int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL /* States: 0 Stop Channel * 1 Load the buffer until it reaches fft_size * 2 Acquisition algorithm * 3 Positive acquisition * 4 Negative acquisition */ switch (d_state) { case 0: { if (d_active) { //restart acquisition variables d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_samplestamp_samples = 0; d_well_count = 0; d_mag = 0.0; d_input_power = 0.0; d_test_statistics = 0.0; d_state = 1; } d_sample_counter += ninput_items[0]; // sample counter consume_each(ninput_items[0]); break; } case 1: { const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer unsigned int buff_increment; if (ninput_items[0] + d_buffer_count <= d_fft_size) { buff_increment = ninput_items[0]; } else { buff_increment = (d_fft_size - d_buffer_count); } memcpy(&d_inbuffer[d_buffer_count], in, sizeof(gr_complex) * buff_increment); // If buffer will be full in next iteration if (d_buffer_count >= d_fft_size - d_gr_stream_buffer) { d_state = 2; } d_buffer_count += buff_increment; d_sample_counter += buff_increment; // sample counter consume_each(buff_increment); break; } case 2: { // Fill last part of the buffer and reset counter const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer if (d_buffer_count < d_fft_size) { memcpy(&d_inbuffer[d_buffer_count], in, sizeof(gr_complex)*(d_fft_size-d_buffer_count)); } d_sample_counter += d_fft_size-d_buffer_count; // sample counter // initialize acquisition algorithm int doppler; unsigned int indext = 0; unsigned int indext_IA = 0; unsigned int indext_IB = 0; unsigned int indext_QA = 0; unsigned int indext_QB = 0; float magt = 0.0; float magt_IA = 0.0; float magt_IB = 0.0; float magt_QA = 0.0; float magt_QB = 0.0; float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size); d_input_power = 0.0; d_mag = 0.0; d_well_count++; DLOG(INFO) << "Channel: " << d_channel << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN << " ,sample stamp: " << d_sample_counter << ", threshold: " << d_threshold << ", doppler_max: " << d_doppler_max << ", doppler_step: " << d_doppler_step; // 1- Compute the input signal power estimation volk_32fc_magnitude_squared_32f(d_magnitudeIA, d_inbuffer, d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitudeIA, d_fft_size); d_input_power /= static_cast(d_fft_size); // 2- Doppler frequency search loop for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) { // doppler search steps doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index; volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_inbuffer, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); // 3- Perform the FFT-based convolution (parallel time search) // Compute the FFT of the carrier wiped--off incoming signal d_fft_if->execute(); // CODE IA // Multiply carrier wiped--off, Fourier transformed incoming signal // with the local FFT'd code reference using SIMD operations with VOLK library volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_I_A, d_fft_size); // compute the inverse FFT d_ifft->execute(); // Search maximum volk_32fc_magnitude_squared_32f(d_magnitudeIA, d_ifft->get_outbuf(), d_fft_size); volk_32f_index_max_16u(&indext_IA, d_magnitudeIA, d_fft_size); // Normalize the maximum value to correct the scale factor introduced by FFTW magt_IA = d_magnitudeIA[indext_IA] / (fft_normalization_factor * fft_normalization_factor); if (d_both_signal_components == true) { // REPEAT FOR ALL CODES. CODE_QA volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_Q_A, d_fft_size); d_ifft->execute(); volk_32fc_magnitude_squared_32f(d_magnitudeQA, d_ifft->get_outbuf(), d_fft_size); volk_32f_index_max_16u(&indext_QA, d_magnitudeQA, d_fft_size); magt_QA = d_magnitudeQA[indext_QA] / (fft_normalization_factor * fft_normalization_factor); } if (d_sampled_ms > 1) // If Integration time > 1 code { // REPEAT FOR ALL CODES. CODE_IB volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_I_B, d_fft_size); d_ifft->execute(); volk_32fc_magnitude_squared_32f(d_magnitudeIB, d_ifft->get_outbuf(), d_fft_size); volk_32f_index_max_16u(&indext_IB, d_magnitudeIB, d_fft_size); magt_IB = d_magnitudeIB[indext_IB] / (fft_normalization_factor * fft_normalization_factor); if (d_both_signal_components == true) { // REPEAT FOR ALL CODES. CODE_QB volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_code_Q_B, d_fft_size); d_ifft->execute(); volk_32fc_magnitude_squared_32f(d_magnitudeQB, d_ifft->get_outbuf(), d_fft_size); volk_32f_index_max_16u(&indext_QB, d_magnitudeQB, d_fft_size); magt_QB = d_magnitudeIB[indext_QB] / (fft_normalization_factor * fft_normalization_factor); } } // Integrate noncoherently the two best combinations (I² + Q²) // and store the result in the I channel. // If CAF filter to resolve doppler ambiguity is needed, // peak is stored before non-coherent integration. if (d_sampled_ms > 1) // T_integration > 1 code { if (magt_IA >= magt_IB) { // if (d_CAF_filter) {d_CAF_vector_I[doppler_index] = magt_IA;} if (d_CAF_window_hz > 0) {d_CAF_vector_I[doppler_index] = d_magnitudeIA[indext_IA];} if (d_both_signal_components) { // Integrate non-coherently I+Q if (magt_QA >= magt_QB) { // if (d_CAF_filter) {d_CAF_vector_Q[doppler_index] = magt_QA;} if (d_CAF_window_hz > 0) {d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA];} for (unsigned int i=0; i 0) {d_CAF_vector_Q[doppler_index] = d_magnitudeQB[indext_QB];} for (unsigned int i=0; i 0) {d_CAF_vector_I[doppler_index] = d_magnitudeIB[indext_IB];} if (d_both_signal_components) { // Integrate non-coherently I+Q if (magt_QA >= magt_QB) { //if (d_CAF_filter) {d_CAF_vector_Q[doppler_index] = magt_QA;} if (d_CAF_window_hz > 0) {d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA];} for (unsigned int i=0; i 0) {d_CAF_vector_Q[doppler_index] = d_magnitudeQB[indext_QB];} for (unsigned int i=0; i 0) {d_CAF_vector_I[doppler_index] = d_magnitudeIA[indext_IA];} if (d_both_signal_components) { // if (d_CAF_filter) {d_CAF_vector_Q[doppler_index] = magt_QA;} if (d_CAF_window_hz > 0) {d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA];} // NON-Coherent integration of only 1 code for (unsigned int i=0; iAcq_delay_samples = static_cast(indext % d_samples_per_code); d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; // 5- Compute the test statistics and compare to the threshold d_test_statistics = d_mag / d_input_power; } } // Record results to file if required if (d_dump) { std::stringstream filename; std::streamsize n = sizeof(float) * (d_fft_size); // noncomplex file write filename.str(""); filename << "../data/test_statistics_E5a_sat_" << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); if (d_sampled_ms > 1) // If integration time > 1 code { if (magt_IA >= magt_IB) { d_dump_file.write((char*)d_magnitudeIA, n); } else { d_dump_file.write((char*)d_magnitudeIB, n); } } else { d_dump_file.write((char*)d_magnitudeIA, n); } d_dump_file.close(); } } // std::cout << "d_mag " << d_mag << ".d_sample_counter " << d_sample_counter << ". acq delay " << d_gnss_synchro->Acq_delay_samples<< " indext "<< indext << std::endl; // 6 OPTIONAL: CAF filter to avoid Doppler ambiguity in bit transition. if (d_CAF_window_hz > 0) { int CAF_bins_half; float* accum = static_cast(volk_malloc(sizeof(float), volk_get_alignment())); CAF_bins_half = d_CAF_window_hz / (2 * d_doppler_step); float weighting_factor; weighting_factor = 0.5 / static_cast(CAF_bins_half); // weighting_factor = 0; // std::cout << "weighting_factor " << weighting_factor << std::endl; // Initialize first iterations for (int doppler_index = 0; doppler_index < CAF_bins_half; doppler_index++) { d_CAF_vector[doppler_index] = 0; // volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], d_CAF_vector_I, CAF_bins_half+doppler_index+1); for (int i = 0; i < CAF_bins_half + doppler_index + 1; i++) { d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1 - weighting_factor * static_cast((doppler_index - i))); } // d_CAF_vector[doppler_index] /= CAF_bins_half+doppler_index+1; d_CAF_vector[doppler_index] /= 1 + CAF_bins_half + doppler_index - weighting_factor * CAF_bins_half * (CAF_bins_half + 1) / 2 - weighting_factor * doppler_index * (doppler_index + 1) / 2; // triangles = [n*(n+1)/2] if (d_both_signal_components) { accum[0] = 0; // volk_32f_accumulator_s32f_a(&accum[0], d_CAF_vector_Q, CAF_bins_half+doppler_index+1); for (int i = 0; i < CAF_bins_half + doppler_index + 1; i++) { accum[0] += d_CAF_vector_Q[i] * (1 - weighting_factor * static_cast(abs(doppler_index - i))); } // accum[0] /= CAF_bins_half+doppler_index+1; accum[0] /= 1 + CAF_bins_half + doppler_index - weighting_factor * CAF_bins_half * (CAF_bins_half + 1) / 2 - weighting_factor * doppler_index * (doppler_index + 1) / 2; // triangles = [n*(n+1)/2] d_CAF_vector[doppler_index] += accum[0]; } } // Body loop for (unsigned int doppler_index = CAF_bins_half; doppler_index < d_num_doppler_bins - CAF_bins_half; doppler_index++) { d_CAF_vector[doppler_index] = 0; // volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], &d_CAF_vector_I[doppler_index-CAF_bins_half], 2*CAF_bins_half+1); for (int i = doppler_index - CAF_bins_half; i < static_cast(doppler_index + CAF_bins_half + 1); i++) { d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1 - weighting_factor * static_cast((doppler_index - i))); } // d_CAF_vector[doppler_index] /= 2*CAF_bins_half+1; d_CAF_vector[doppler_index] /= 1 + 2 * CAF_bins_half - 2 * weighting_factor * CAF_bins_half * (CAF_bins_half + 1) / 2; if (d_both_signal_components) { accum[0] = 0; // volk_32f_accumulator_s32f_a(&accum[0], &d_CAF_vector_Q[doppler_index-CAF_bins_half], 2*CAF_bins_half); for (int i = doppler_index-CAF_bins_half; i < static_cast(doppler_index + CAF_bins_half + 1); i++) { accum[0] += d_CAF_vector_Q[i] * (1 - weighting_factor * static_cast((doppler_index - i))); } // accum[0] /= 2*CAF_bins_half+1; accum[0] /= 1 + 2 * CAF_bins_half - 2 * weighting_factor * CAF_bins_half * (CAF_bins_half + 1) / 2; d_CAF_vector[doppler_index] += accum[0]; } } // Final iterations for (int doppler_index = d_num_doppler_bins - CAF_bins_half; doppler_index < static_cast(d_num_doppler_bins); doppler_index++) { d_CAF_vector[doppler_index] = 0; // volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], &d_CAF_vector_I[doppler_index-CAF_bins_half], CAF_bins_half + (d_num_doppler_bins-doppler_index)); for (int i = doppler_index - CAF_bins_half; i < static_cast(d_num_doppler_bins); i++) { d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1 - weighting_factor * (abs(doppler_index - i))); } // d_CAF_vector[doppler_index] /= CAF_bins_half+(d_num_doppler_bins-doppler_index); d_CAF_vector[doppler_index] /= 1 + CAF_bins_half + (d_num_doppler_bins - doppler_index - 1) - weighting_factor * CAF_bins_half * (CAF_bins_half + 1) / 2 - weighting_factor * (d_num_doppler_bins - doppler_index - 1) * (d_num_doppler_bins - doppler_index) / 2; if (d_both_signal_components) { accum[0] = 0; // volk_32f_accumulator_s32f_a(&accum[0], &d_CAF_vector_Q[doppler_index-CAF_bins_half], CAF_bins_half + (d_num_doppler_bins-doppler_index)); for (int i = doppler_index-CAF_bins_half; i < static_cast(d_num_doppler_bins); i++) { accum[0] += d_CAF_vector_Q[i] * (1 - weighting_factor * (abs(doppler_index - i))); } // accum[0] /= CAF_bins_half+(d_num_doppler_bins-doppler_index); accum[0] /= 1 + CAF_bins_half + (d_num_doppler_bins - doppler_index - 1) - weighting_factor * CAF_bins_half * (CAF_bins_half + 1) / 2 - weighting_factor * (d_num_doppler_bins - doppler_index - 1) * (d_num_doppler_bins - doppler_index) / 2; d_CAF_vector[doppler_index] += accum[0]; } } // Recompute the maximum doppler peak volk_32f_index_max_16u(&indext, d_CAF_vector, d_num_doppler_bins); doppler = -static_cast(d_doppler_max) + d_doppler_step * indext; d_gnss_synchro->Acq_doppler_hz = static_cast(doppler); // Dump if required, appended at the end of the file if (d_dump) { std::stringstream filename; std::streamsize n = sizeof(float) * (d_num_doppler_bins); // noncomplex file write filename.str(""); filename << "../data/test_statistics_E5a_sat_" << d_gnss_synchro->PRN << "_CAF.dat"; d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); d_dump_file.write((char*)d_CAF_vector, n); d_dump_file.close(); } volk_free(accum); } if (d_well_count == d_max_dwells) { if (d_test_statistics > d_threshold) { d_state = 3; // Positive acquisition } else { d_state = 4; // Negative acquisition } } else { d_state = 1; } consume_each(d_fft_size - d_buffer_count); d_buffer_count = 0; break; } case 3: { // 7.1- Declare positive acquisition using a message queue DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; acquisition_message = 1; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); d_sample_counter += ninput_items[0]; // sample counter consume_each(ninput_items[0]); break; } case 4: { // 7.2- Declare negative acquisition using a message queue DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "test statistics value " << d_test_statistics; DLOG(INFO) << "test statistics threshold " << d_threshold; DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; DLOG(INFO) << "magnitude " << d_mag; DLOG(INFO) << "input signal power " << d_input_power; d_active = false; d_state = 0; d_sample_counter += ninput_items[0]; // sample counter consume_each(ninput_items[0]); acquisition_message = 2; this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message)); break; } } return noutput_items; }