/*! * \file glonass_l1_ca_pcps_acquisition_gsoc2017_test.cc * \brief Tests a PCPS acquisition block for Glonass L1 C/A signals * \author Gabriel Araujo, 2017. gabriel.araujo.5000(at)gmail.com * \author Luis Esteve, 2017. luis(at)epsilon-formacion.com * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * SPDX-License-Identifier: GPL-3.0-or-later * * ------------------------------------------------------------------------- */ #include "concurrent_queue.h" #include "configuration_interface.h" #include "freq_xlating_fir_filter.h" #include "gen_signal_source.h" #include "glonass_l1_ca_pcps_acquisition.h" #include "gnss_block_interface.h" #include "gnss_sdr_valve.h" #include "gnss_synchro.h" #include "in_memory_configuration.h" #include "pass_through.h" #include "signal_generator.h" #include "signal_generator_c.h" #include #include #include #include #include #include #include #include #include #include #if HAS_GENERIC_LAMBDA #else #include #endif #ifdef GR_GREATER_38 #include #else #include #endif // ######## GNURADIO BLOCK MESSAGE RECEVER ######### class GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx; #if GNURADIO_USES_STD_POINTERS using GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr = std::shared_ptr; #else using GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr = boost::shared_ptr; #endif GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(Concurrent_Queue& queue); class GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx : public gr::block { private: friend GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(Concurrent_Queue& queue); void msg_handler_events(pmt::pmt_t msg); explicit GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(Concurrent_Queue& queue); Concurrent_Queue& channel_internal_queue; public: int rx_message; ~GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(); // Default destructor }; GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(Concurrent_Queue& queue) { return GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr(new GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(queue)); } void GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::msg_handler_events(pmt::pmt_t msg) { try { int64_t message = pmt::to_long(std::move(msg)); rx_message = message; channel_internal_queue.push(rx_message); } catch (boost::bad_any_cast& e) { LOG(WARNING) << "msg_handler_telemetry Bad any cast!"; rx_message = 0; } } GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(Concurrent_Queue& queue) : gr::block("GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)), channel_internal_queue(queue) { this->message_port_register_in(pmt::mp("events")); this->set_msg_handler(pmt::mp("events"), #if HAS_GENERIC_LAMBDA [this](auto&& PH1) { msg_handler_events(PH1); }); #else #if USE_BOOST_BIND_PLACEHOLDERS boost::bind(&GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::msg_handler_events, this, boost::placeholders::_1)); #else boost::bind(&GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::msg_handler_events, this, _1)); #endif #endif rx_message = 0; } GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::~GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx() = default; // ########################################################### class GlonassL1CaPcpsAcquisitionGSoC2017Test : public ::testing::Test { protected: GlonassL1CaPcpsAcquisitionGSoC2017Test() { item_size = sizeof(gr_complex); stop = false; message = 0; gnss_synchro = Gnss_Synchro(); acquisition = nullptr; init(); } ~GlonassL1CaPcpsAcquisitionGSoC2017Test() = default; void init(); void config_1(); void config_2(); void start_queue(); void wait_message(); void process_message(); void stop_queue(); Concurrent_Queue channel_internal_queue; std::shared_ptr> queue; gr::top_block_sptr top_block; GlonassL1CaPcpsAcquisition* acquisition; std::shared_ptr config; Gnss_Synchro gnss_synchro; size_t item_size; bool stop; int message; std::thread ch_thread; unsigned int integration_time_ms = 0; unsigned int fs_in = 0; double expected_delay_chips = 0.0; double expected_doppler_hz = 0.0; float max_doppler_error_hz = 0.0; float max_delay_error_chips = 0.0; unsigned int num_of_realizations = 0; unsigned int realization_counter; unsigned int detection_counter; unsigned int correct_estimation_counter; unsigned int acquired_samples; unsigned int mean_acq_time_us; double mse_doppler; double mse_delay; double Pd; double Pfa_p; double Pfa_a; }; void GlonassL1CaPcpsAcquisitionGSoC2017Test::init() { message = 0; realization_counter = 0; detection_counter = 0; correct_estimation_counter = 0; acquired_samples = 0; mse_doppler = 0; mse_delay = 0; mean_acq_time_us = 0; Pd = 0; Pfa_p = 0; Pfa_a = 0; } void GlonassL1CaPcpsAcquisitionGSoC2017Test::config_1() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = 'R'; std::string signal = "1G"; signal.copy(gnss_synchro.Signal, 2, 0); integration_time_ms = 1; fs_in = 31.75e6; expected_delay_chips = 255; expected_doppler_hz = -1500; max_doppler_error_hz = 2 / (3 * integration_time_ms * 1e-3); max_delay_error_chips = 0.50; num_of_realizations = 1; config = std::make_shared(); config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(fs_in)); config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.item_type", "gr_complex"); config->set_property("SignalSource.num_satellites", "1"); config->set_property("SignalSource.system_0", "R"); config->set_property("SignalSource.PRN_0", "10"); config->set_property("SignalSource.CN0_dB_0", "44"); config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); config->set_property("SignalSource.noise_flag", "false"); config->set_property("SignalSource.data_flag", "false"); config->set_property("SignalSource.BW_BB", "0.97"); config->set_property("InputFilter.implementation", "Freq_Xlating_Fir_Filter"); config->set_property("InputFilter.input_item_type", "gr_complex"); config->set_property("InputFilter.output_item_type", "gr_complex"); config->set_property("InputFilter.taps_item_type", "float"); config->set_property("InputFilter.number_of_taps", "11"); config->set_property("InputFilter.number_of_bands", "2"); config->set_property("InputFilter.band1_begin", "0.0"); config->set_property("InputFilter.band1_end", "0.97"); config->set_property("InputFilter.band2_begin", "0.98"); config->set_property("InputFilter.band2_end", "1.0"); config->set_property("InputFilter.ampl1_begin", "1.0"); config->set_property("InputFilter.ampl1_end", "1.0"); config->set_property("InputFilter.ampl2_begin", "0.0"); config->set_property("InputFilter.ampl2_end", "0.0"); config->set_property("InputFilter.band1_error", "1.0"); config->set_property("InputFilter.band2_error", "1.0"); config->set_property("InputFilter.filter_type", "bandpass"); config->set_property("InputFilter.grid_density", "16"); config->set_property("InputFilter.sampling_frequency", std::to_string(fs_in)); config->set_property("InputFilter.IF", "4000000"); config->set_property("Acquisition.item_type", "gr_complex"); config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(integration_time_ms)); config->set_property("Acquisition.max_dwells", "1"); config->set_property("Acquisition.implementation", "GLONASS_L1_CA_PCPS_Acquisition"); // config->set_property("Acquisition.threshold", "2.5"); config->set_property("Acquisition.pfa", "0.001"); config->set_property("Acquisition.doppler_max", "10000"); config->set_property("Acquisition.doppler_step", "250"); config->set_property("Acquisition.bit_transition_flag", "false"); config->set_property("Acquisition.dump", "false"); } void GlonassL1CaPcpsAcquisitionGSoC2017Test::config_2() { gnss_synchro.Channel_ID = 0; gnss_synchro.System = 'R'; std::string signal = "1G"; signal.copy(gnss_synchro.Signal, 2, 0); integration_time_ms = 1; fs_in = 31.75e6; expected_delay_chips = 374; expected_doppler_hz = -2000; max_doppler_error_hz = 2 / (3 * integration_time_ms * 1e-3); max_delay_error_chips = 0.50; num_of_realizations = 100; config = std::make_shared(); config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(fs_in)); config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); config->set_property("SignalSource.item_type", "gr_complex"); config->set_property("SignalSource.num_satellites", "4"); config->set_property("SignalSource.system_0", "R"); config->set_property("SignalSource.PRN_0", "10"); config->set_property("SignalSource.CN0_dB_0", "44"); config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); config->set_property("SignalSource.system_1", "R"); config->set_property("SignalSource.PRN_1", "15"); config->set_property("SignalSource.CN0_dB_1", "44"); config->set_property("SignalSource.doppler_Hz_1", "1000"); config->set_property("SignalSource.delay_chips_1", "100"); config->set_property("SignalSource.system_2", "R"); config->set_property("SignalSource.PRN_2", "21"); config->set_property("SignalSource.CN0_dB_2", "44"); config->set_property("SignalSource.doppler_Hz_2", "2000"); config->set_property("SignalSource.delay_chips_2", "200"); config->set_property("SignalSource.system_3", "R"); config->set_property("SignalSource.PRN_3", "22"); config->set_property("SignalSource.CN0_dB_3", "44"); config->set_property("SignalSource.doppler_Hz_3", "3000"); config->set_property("SignalSource.delay_chips_3", "300"); config->set_property("SignalSource.noise_flag", "true"); config->set_property("SignalSource.data_flag", "true"); config->set_property("SignalSource.BW_BB", "0.97"); config->set_property("InputFilter.implementation", "Freq_Xlating_Fir_Filter"); config->set_property("InputFilter.input_item_type", "gr_complex"); config->set_property("InputFilter.output_item_type", "gr_complex"); config->set_property("InputFilter.taps_item_type", "float"); config->set_property("InputFilter.number_of_taps", "11"); config->set_property("InputFilter.number_of_bands", "2"); config->set_property("InputFilter.band1_begin", "0.0"); config->set_property("InputFilter.band1_end", "0.97"); config->set_property("InputFilter.band2_begin", "0.98"); config->set_property("InputFilter.band2_end", "1.0"); config->set_property("InputFilter.ampl1_begin", "1.0"); config->set_property("InputFilter.ampl1_end", "1.0"); config->set_property("InputFilter.ampl2_begin", "0.0"); config->set_property("InputFilter.ampl2_end", "0.0"); config->set_property("InputFilter.band1_error", "1.0"); config->set_property("InputFilter.band2_error", "1.0"); config->set_property("InputFilter.filter_type", "bandpass"); config->set_property("InputFilter.grid_density", "16"); config->set_property("InputFilter.sampling_frequency", std::to_string(fs_in)); config->set_property("InputFilter.IF", "4000000"); config->set_property("Acquisition.item_type", "gr_complex"); config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(integration_time_ms)); config->set_property("Acquisition.max_dwells", "1"); config->set_property("Acquisition.implementation", "GLONASS_L1_CA_PCPS_Acquisition"); config->set_property("Acquisition.pfa", "0.001"); config->set_property("Acquisition.doppler_max", "10000"); config->set_property("Acquisition.doppler_step", "250"); config->set_property("Acquisition.bit_transition_flag", "false"); config->set_property("Acquisition.dump", "false"); } void GlonassL1CaPcpsAcquisitionGSoC2017Test::start_queue() { stop = false; ch_thread = std::thread(&GlonassL1CaPcpsAcquisitionGSoC2017Test::wait_message, this); } void GlonassL1CaPcpsAcquisitionGSoC2017Test::wait_message() { struct timeval tv; int64_t begin = 0; int64_t end = 0; while (!stop) { acquisition->reset(); gettimeofday(&tv, nullptr); begin = tv.tv_sec * 1e6 + tv.tv_usec; channel_internal_queue.wait_and_pop(message); gettimeofday(&tv, nullptr); end = tv.tv_sec * 1e6 + tv.tv_usec; mean_acq_time_us += (end - begin); process_message(); } } void GlonassL1CaPcpsAcquisitionGSoC2017Test::process_message() { if (message == 1) { detection_counter++; // The term -5 is here to correct the additional delay introduced by the FIR filter // The value 511.0 must be a variable, chips/length double delay_error_chips = std::abs(static_cast(expected_delay_chips) - (static_cast(gnss_synchro.Acq_delay_samples) - 5.0) * 511.0 / (static_cast(fs_in) * 1e-3)); double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); mse_delay += std::pow(delay_error_chips, 2); mse_doppler += std::pow(doppler_error_hz, 2); if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz)) { correct_estimation_counter++; } } realization_counter++; std::cout << "Progress: " << round(static_cast(realization_counter) / static_cast(num_of_realizations) * 100.0) << "% \r" << std::flush; if (realization_counter == num_of_realizations) { mse_delay /= num_of_realizations; mse_doppler /= num_of_realizations; Pd = static_cast(correct_estimation_counter) / static_cast(num_of_realizations); Pfa_a = static_cast(detection_counter) / static_cast(num_of_realizations); Pfa_p = (static_cast(detection_counter) - static_cast(correct_estimation_counter)) / static_cast(num_of_realizations); mean_acq_time_us /= num_of_realizations; stop_queue(); top_block->stop(); } } void GlonassL1CaPcpsAcquisitionGSoC2017Test::stop_queue() { stop = true; } TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, Instantiate) { config_1(); acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 0); delete acquisition; } TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ConnectAndRun) { int nsamples = floor(fs_in * integration_time_ms * 1e-3); std::chrono::time_point begin, end; std::chrono::duration elapsed_seconds(0); queue = std::make_shared>(); top_block = gr::make_top_block("Acquisition test"); config_1(); acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 0); auto msg_rx = GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(channel_internal_queue); ASSERT_NO_THROW({ acquisition->connect(top_block); auto source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0)); auto valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue); top_block->connect(source, 0, valve, 0); top_block->connect(valve, 0, acquisition->get_left_block(), 0); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting the blocks of acquisition test."; EXPECT_NO_THROW({ begin = std::chrono::system_clock::now(); top_block->run(); // Start threads and wait end = std::chrono::system_clock::now(); elapsed_seconds = end - begin; }) << "Failure running the top_block."; std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; delete acquisition; } TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ValidationOfResults) { config_1(); queue = std::make_shared>(); top_block = gr::make_top_block("Acquisition test"); acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 0); auto msg_rx = GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(channel_internal_queue); ASSERT_NO_THROW({ acquisition->set_channel(1); }) << "Failure setting channel."; ASSERT_NO_THROW({ acquisition->set_gnss_synchro(&gnss_synchro); }) << "Failure setting gnss_synchro."; ASSERT_NO_THROW({ acquisition->set_doppler_max(10000); }) << "Failure setting doppler_max."; ASSERT_NO_THROW({ acquisition->set_doppler_step(500); }) << "Failure setting doppler_step."; ASSERT_NO_THROW({ acquisition->connect(top_block); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting acquisition to the top_block."; acquisition->init(); ASSERT_NO_THROW({ std::shared_ptr signal_generator = std::make_shared(config.get(), "SignalSource", 0, 1, queue); std::shared_ptr filter = std::make_shared(config.get(), "InputFilter", 1, 1); signal_generator->connect(top_block); top_block->connect(signal_generator->get_right_block(), 0, filter->get_left_block(), 0); top_block->connect(filter->get_right_block(), 0, acquisition->get_left_block(), 0); }) << "Failure connecting the blocks of acquisition test."; // i = 0 --> satellite in acquisition is visible // i = 1 --> satellite in acquisition is not visible for (unsigned int i = 0; i < 2; i++) { init(); if (i == 0) { gnss_synchro.PRN = 10; // This satellite is visible } else if (i == 1) { gnss_synchro.PRN = 20; // This satellite is not visible } acquisition->set_local_code(); acquisition->set_state(1); // Ensure that acquisition starts at the first sample start_queue(); EXPECT_NO_THROW({ top_block->run(); // Start threads and wait }) << "Failure running the top_block."; if (i == 0) { EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; if (message == 1) { EXPECT_EQ(static_cast(1), correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation."; } } else if (i == 1) { EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL."; } ASSERT_NO_THROW({ ch_thread.join(); }) << "Failure while waiting the queue to stop"; } delete acquisition; } TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ValidationOfResultsProbabilities) { config_2(); queue = std::make_shared>(); top_block = gr::make_top_block("Acquisition test"); acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 0); auto msg_rx = GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(channel_internal_queue); ASSERT_NO_THROW({ acquisition->set_channel(1); }) << "Failure setting channel."; ASSERT_NO_THROW({ acquisition->set_gnss_synchro(&gnss_synchro); }) << "Failure setting gnss_synchro."; ASSERT_NO_THROW({ acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); }) << "Failure setting doppler_max."; ASSERT_NO_THROW({ acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500)); }) << "Failure setting doppler_step."; ASSERT_NO_THROW({ acquisition->connect(top_block); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); }) << "Failure connecting acquisition to the top_block."; acquisition->init(); ASSERT_NO_THROW({ std::shared_ptr signal_generator = std::make_shared(config.get(), "SignalSource", 0, 1, queue); std::shared_ptr filter = std::make_shared(config.get(), "InputFilter", 1, 1); signal_generator->connect(top_block); top_block->connect(signal_generator->get_right_block(), 0, filter->get_left_block(), 0); top_block->connect(filter->get_right_block(), 0, acquisition->get_left_block(), 0); }) << "Failure connecting the blocks of acquisition test."; std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl; // i = 0 --> satellite in acquisition is visible (prob of detection and prob of detection with wrong estimation) // i = 1 --> satellite in acquisition is not visible (prob of false detection) for (unsigned int i = 0; i < 2; i++) { init(); if (i == 0) { gnss_synchro.PRN = 10; // This satellite is visible } else if (i == 1) { gnss_synchro.PRN = 1; // This satellite is not visible } acquisition->set_local_code(); start_queue(); EXPECT_NO_THROW({ top_block->run(); // Start threads and wait }) << "Failure running the top_block." << std::endl; if (i == 0) { std::cout << "Estimated probability of detection = " << Pd << std::endl; std::cout << "Estimated probability of false alarm (satellite present) = " << Pfa_p << std::endl; std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; } else if (i == 1) { std::cout << "Estimated probability of false alarm (satellite absent) = " << Pfa_a << std::endl; std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; } ASSERT_NO_THROW({ ch_thread.join(); }) << "Failure while waiting the queue to stop" << std::endl; } delete acquisition; }