/*! * \file gps_l1_ca_pcps_acquisition_fpga.cc * \brief Adapts a PCPS acquisition block to an FPGA AcquisitionInterface * for GPS L1 C/A signals * \authors * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "gps_l1_ca_pcps_acquisition_fpga.h" #include "configuration_interface.h" #include "gnss_sdr_flags.h" #include "GPS_L1_CA.h" #include "gps_sdr_signal_processing.h" #include #include #include #define NUM_PRNs 32 using google::LogMessage; GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga( ConfigurationInterface* configuration, std::string role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { pcpsconf_fpga_t acq_parameters; configuration_ = configuration; std::string default_item_type = "gr_complex"; DLOG(INFO) << "role " << role; long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); long fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); acq_parameters.fs_in = fs_in; long ifreq = configuration_->property(role + ".if", 0); acq_parameters.freq = ifreq; doppler_max_ = configuration_->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; acq_parameters.doppler_max = doppler_max_; unsigned int sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1); acq_parameters.sampled_ms = sampled_ms; unsigned int code_length = static_cast(std::round(static_cast(fs_in) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS))); // The FPGA can only use FFT lengths that are a power of two. float nbits = ceilf(log2f((float)code_length)); unsigned int nsamples_total = pow(2, nbits); unsigned int vector_length = nsamples_total * sampled_ms; unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 0); acq_parameters.select_queue_Fpga = select_queue_Fpga; std::string default_device_name = "/dev/uio0"; std::string device_name = configuration_->property(role + ".devicename", default_device_name); acq_parameters.device_name = device_name; acq_parameters.samples_per_ms = nsamples_total; acq_parameters.samples_per_code = nsamples_total; // compute all the GPS L1 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time // a channel is assigned) gr::fft::fft_complex* fft_if = new gr::fft::fft_complex(vector_length, true); // Direct FFT // allocate memory to compute all the PRNs and compute all the possible codes std::complex* code = new std::complex[nsamples_total]; // buffer for the local code gr_complex* fft_codes_padded = static_cast(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_all_fft_codes_ = new lv_16sc_t[nsamples_total * NUM_PRNs]; // memory containing all the possible fft codes for PRN 0 to 32 float max; // temporary maxima search for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++) { gps_l1_ca_code_gen_complex_sampled(code, PRN, fs_in, 0); // generate PRN code // fill in zero padding for (int s = code_length; s < nsamples_total; s++) { code[s] = 0; } int offset = 0; memcpy(fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * nsamples_total); // copy to FFT buffer fft_if->execute(); // Run the FFT of local code volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values max = 0; // initialize maximum value for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima { if (std::abs(fft_codes_padded[i].real()) > max) { max = std::abs(fft_codes_padded[i].real()); } if (std::abs(fft_codes_padded[i].imag()) > max) { max = std::abs(fft_codes_padded[i].imag()); } } for (unsigned int i = 0; i < nsamples_total; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs { d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast(floor(fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)), static_cast(floor(fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max))); } } // acq_parameters acq_parameters.all_fft_codes = d_all_fft_codes_; // temporary buffers that we can delete delete[] code; delete fft_if; delete[] fft_codes_padded; acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters); DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")"; channel_ = 0; doppler_step_ = 0; gnss_synchro_ = 0; } GpsL1CaPcpsAcquisitionFpga::~GpsL1CaPcpsAcquisitionFpga() { delete[] d_all_fft_codes_; } void GpsL1CaPcpsAcquisitionFpga::set_channel(unsigned int channel) { channel_ = channel; acquisition_fpga_->set_channel(channel_); } void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold) { DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold; acquisition_fpga_->set_threshold(threshold); } void GpsL1CaPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; acquisition_fpga_->set_doppler_max(doppler_max_); } void GpsL1CaPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; acquisition_fpga_->set_doppler_step(doppler_step_); } void GpsL1CaPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; acquisition_fpga_->set_gnss_synchro(gnss_synchro_); } signed int GpsL1CaPcpsAcquisitionFpga::mag() { return acquisition_fpga_->mag(); } void GpsL1CaPcpsAcquisitionFpga::init() { acquisition_fpga_->init(); } void GpsL1CaPcpsAcquisitionFpga::set_local_code() { acquisition_fpga_->set_local_code(); } void GpsL1CaPcpsAcquisitionFpga::reset() { acquisition_fpga_->set_active(true); } void GpsL1CaPcpsAcquisitionFpga::set_state(int state) { acquisition_fpga_->set_state(state); } void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block) { if (top_block) { // nothing to disconnect } } void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block) { if (top_block) { // nothing to disconnect } } gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_left_block() { return acquisition_fpga_; } gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_right_block() { return acquisition_fpga_; }