/*! * \file galileo_e1_pcps_8ms_ambiguous_acquisition.cc * \brief Adapts a Galileo PCPS 8ms acquisition block to an * AcquisitionInterface for Galileo E1 Signals * \author Marc Molina, 2013. marc.molina.pena(at)gmail.com * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e1_pcps_8ms_ambiguous_acquisition.h" #include #include #include #include "galileo_e1_signal_processing.h" #include "Galileo_E1.h" #include "configuration_interface.h" #include "gnss_sdr_flags.h" using google::LogMessage; GalileoE1Pcps8msAmbiguousAcquisition::GalileoE1Pcps8msAmbiguousAcquisition( ConfigurationInterface* configuration, std::string role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) { configuration_ = configuration; std::string default_item_type = "gr_complex"; std::string default_dump_filename = "../data/acquisition.dat"; DLOG(INFO) << "role " << role; item_type_ = configuration_->property(role + ".item_type", default_item_type); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); if_ = configuration_->property(role + ".if", 0); dump_ = configuration_->property(role + ".dump", false); doppler_max_ = configuration_->property(role + ".doppler_max", 5000); if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); if (sampled_ms_ % 4 != 0) { sampled_ms_ = static_cast(sampled_ms_ / 4) * 4; LOG(WARNING) << "coherent_integration_time should be multiple of " << "Galileo code length (4 ms). coherent_integration_time = " << sampled_ms_ << " ms will be used."; } max_dwells_ = configuration_->property(role + ".max_dwells", 1); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); //--- Find number of samples per spreading code (4 ms) ----------------- code_length_ = round( fs_in_ / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)); vector_length_ = code_length_ * static_cast(sampled_ms_ / 4); int samples_per_ms = code_length_ / 4; code_ = new gr_complex[vector_length_]; if (item_type_.compare("gr_complex") == 0) { item_size_ = sizeof(gr_complex); acquisition_cc_ = galileo_pcps_8ms_make_acquisition_cc(sampled_ms_, max_dwells_, doppler_max_, if_, fs_in_, samples_per_ms, code_length_, dump_, dump_filename_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; } else { item_size_ = sizeof(gr_complex); LOG(WARNING) << item_type_ << " unknown acquisition item type"; } channel_ = 0; threshold_ = 0.0; doppler_step_ = 0; gnss_synchro_ = 0; } GalileoE1Pcps8msAmbiguousAcquisition::~GalileoE1Pcps8msAmbiguousAcquisition() { delete[] code_; } void GalileoE1Pcps8msAmbiguousAcquisition::set_channel(unsigned int channel) { channel_ = channel; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_channel(channel_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_threshold(float threshold) { float pfa = configuration_->property(role_ + boost::lexical_cast(channel_) + ".pfa", 0.0); if (pfa == 0.0) pfa = configuration_->property(role_ + ".pfa", 0.0); if (pfa == 0.0) { threshold_ = threshold; } else { threshold_ = calculate_threshold(pfa); } DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_threshold(threshold_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max) { doppler_max_ = doppler_max; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_doppler_max(doppler_max_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step) { doppler_step_ = doppler_step; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_doppler_step(doppler_step_); } } void GalileoE1Pcps8msAmbiguousAcquisition::set_gnss_synchro( Gnss_Synchro* gnss_synchro) { gnss_synchro_ = gnss_synchro; if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_gnss_synchro(gnss_synchro_); } } signed int GalileoE1Pcps8msAmbiguousAcquisition::mag() { if (item_type_.compare("gr_complex") == 0) { return acquisition_cc_->mag(); } else { return 0; } } void GalileoE1Pcps8msAmbiguousAcquisition::init() { acquisition_cc_->init(); //set_local_code(); } void GalileoE1Pcps8msAmbiguousAcquisition::set_local_code() { if (item_type_.compare("gr_complex") == 0) { bool cboc = configuration_->property( "Acquisition" + boost::lexical_cast(channel_) + ".cboc", false); std::complex* code = new std::complex[code_length_]; galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, cboc, gnss_synchro_->PRN, fs_in_, 0, false); for (unsigned int i = 0; i < sampled_ms_ / 4; i++) { memcpy(&(code_[i * code_length_]), code, sizeof(gr_complex) * code_length_); } acquisition_cc_->set_local_code(code_); delete[] code; } } void GalileoE1Pcps8msAmbiguousAcquisition::reset() { if (item_type_.compare("gr_complex") == 0) { acquisition_cc_->set_active(true); } } float GalileoE1Pcps8msAmbiguousAcquisition::calculate_threshold(float pfa) { unsigned int frequency_bins = 0; for (int doppler = static_cast(-doppler_max_); doppler <= static_cast(doppler_max_); doppler += doppler_step_) { frequency_bins++; } DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa; unsigned int ncells = vector_length_ * frequency_bins; double exponent = 1 / static_cast(ncells); double val = pow(1.0 - pfa, exponent); double lambda = double(vector_length_); boost::math::exponential_distribution mydist(lambda); float threshold = static_cast(quantile(mydist, val)); return threshold; } void GalileoE1Pcps8msAmbiguousAcquisition::connect(gr::top_block_sptr top_block) { if (item_type_.compare("gr_complex") == 0) { top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0); } } void GalileoE1Pcps8msAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block) { if (item_type_.compare("gr_complex") == 0) { top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0); } } gr::basic_block_sptr GalileoE1Pcps8msAmbiguousAcquisition::get_left_block() { return stream_to_vector_; } gr::basic_block_sptr GalileoE1Pcps8msAmbiguousAcquisition::get_right_block() { return acquisition_cc_; }