; Default configuration file ; You can define your own receiver and invoke it by doing ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second]. GNSS-SDR.internal_fs_sps=4000000 ;######### SUPL RRLP GPS assistance configuration ##### ; Check http://www.mcc-mnc.com/ ; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en GNSS-SDR.SUPL_1C_enabled=false GNSS-SDR.SUPL_read_1C_assistance_xml=true GNSS-SDR.SUPL_1C_ephemeris_server=supl.google.com GNSS-SDR.SUPL_1C_ephemeris_port=7275 GNSS-SDR.SUPL_1C_acquisition_server=supl.google.com GNSS-SDR.SUPL_1C_acquisition_port=7275 GNSS-SDR.SUPL_MCC=244 GNSS-SDR.SUPL_MNS=5 GNSS-SDR.SUPL_LAC=0x59e2 GNSS-SDR.SUPL_CI=0x31b0 ;######### SIGNAL_SOURCE CONFIG ############ ;#implementation SignalSource.implementation=UHD_Signal_Source ;#When left empty, the device discovery routines will search all vailable transports on the system (ethernet, usb...) SignalSource.device_address=192.168.40.2 ; <- PUT THE IP ADDRESS OF YOUR USRP HERE ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. SignalSource.item_type=gr_complex ;#RF_channels: Number of RF channels present in the frontend device (i.e. USRP with two frontends) SignalSource.RF_channels=2 ;#sampling_frequency: Original Signal sampling frequency in [Hz] SignalSource.sampling_frequency=4000000 ;#subdevice: UHD subdevice specification (for USRP dual frontend use A:0 or B:0 or A:0 B:0) SignalSource.subdevice=A:0 B:0 ;######### RF Channels specific settings ###### ;## RF CHANNEL 0 ## ;#freq: RF front-end center frequency in [Hz] SignalSource.freq0=1575420000 ;#gain: Front-end Gain in [dB] SignalSource.gain0=50 ;#samples: Number of samples to be processed. Notice that 0 indicates no limit SignalSource.samples0=0 ;#dump: Dump the Signal source RF channel data to a file. Disable this option in this version SignalSource.dump0=false SignalSource.dump_filename0=../data/signal_source0.dat ;## RF CHANNEL 1 ## ;#freq: RF front-end center frequency in [Hz] SignalSource.freq1=1575420000 ;#gain: Front-end Gain in [dB] SignalSource.gain1=50 ;#samples: Number of samples to be processed. Notice that 0 indicates no limit SignalSource.samples1=0 ;#dump: Dump the Signal source RF channel data to a file. Disable this option in this version SignalSource.dump1=false SignalSource.dump_filename1=../data/signal_source1.dat ;######### SIGNAL_CONDITIONER 0 CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner0.implementation=Pass_Through ;######### DATA_TYPE_ADAPTER 0 CONFIG ############ ;## Changes the type of input data. ;#implementation: [Pass_Through] disables this block DataTypeAdapter0.implementation=Pass_Through DataTypeAdapter0.item_type=gr_complex ;######### INPUT_FILTER 0 CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation ;# that shifts IF down to zero Hz. InputFilter0.implementation=Pass_Through ;#dump: Dump the filtered data to a file. InputFilter0.dump=false ;#dump_filename: Log path and filename. InputFilter0.dump_filename=../data/input_filter.dat ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse ;#reponse given a set of band edges, the desired reponse on those bands, ;#and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. InputFilter0.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. InputFilter0.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter0.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter0.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter0.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter0.band1_begin=0.0 InputFilter0.band1_end=0.45 InputFilter0.band2_begin=0.55 InputFilter0.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter0.ampl1_begin=1.0 InputFilter0.ampl1_end=1.0 InputFilter0.ampl2_begin=0.0 InputFilter0.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter0.band1_error=1.0 InputFilter0.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter0.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter0.grid_density=16 ;# Original sampling frequency stored in the signal file InputFilter0.sampling_frequency=20480000 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter0.IF=5499998.47412109 ;# Decimation factor after the frequency tranaslating block InputFilter0.decimation_factor=8 ;######### RESAMPLER CONFIG 0 ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation Resampler0.implementation=Pass_Through ;######### SIGNAL_CONDITIONER 1 CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner1.implementation=Pass_Through ;######### INPUT_FILTER 1 CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation ;# that shifts IF down to zero Hz. InputFilter1.implementation=Pass_Through ;#dump: Dump the filtered data to a file. InputFilter1.dump=false ;#dump_filename: Log path and filename. InputFilter1.dump_filename=../data/input_filter.dat ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse ;#reponse given a set of band edges, the desired reponse on those bands, ;#and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. InputFilter1.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. InputFilter1.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter1.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter1.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter1.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter1.band1_begin=0.0 InputFilter1.band1_end=0.45 InputFilter1.band2_begin=0.55 InputFilter1.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter1.ampl1_begin=1.0 InputFilter1.ampl1_end=1.0 InputFilter1.ampl2_begin=0.0 InputFilter1.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter1.band1_error=1.0 InputFilter1.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter1.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter1.grid_density=16 ;# Original sampling frequency stored in the signal file InputFilter1.sampling_frequency=20480000 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter1.IF=5499998.47412109 ;# Decimation factor after the frequency tranaslating block InputFilter1.decimation_factor=8 ;######### RESAMPLER CONFIG 1 ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation Resampler1.implementation=Pass_Through ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available GPS satellite channels. Channels_1C.count=4 ;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver Channels.in_acquisition=1 ;#signal: ;# "1C" GPS L1 C/A ;# "2S" GPS L2 L2C (M) ;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL) ;# "5X" GALILEO E5a I+Q ;# CHANNEL CONNECTION Channel0.RF_channel_ID=0 Channel1.RF_channel_ID=1 Channel2.RF_channel_ID=0 Channel3.RF_channel_ID=1 ;#signal: ;#if the option is disabled by default is assigned "1C" GPS L1 C/A Channel0.signal=1C Channel1.signal=1C Channel2.signal=1C Channel3.signal=1C ;######### SPECIFIC CHANNELS CONFIG ###### ;#The following options are specific to each channel and overwrite the generic options ;######### ACQUISITION GLOBAL CONFIG ############ ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_1C.dump=false ;#filename: Log path and filename Acquisition_1C.dump_filename=./acq_dump.dat ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. Acquisition_1C.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_1C.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_1C.coherent_integration_time_ms=1 ;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition ;#threshold: Acquisition threshold. It will be ignored if pfa is defined. Acquisition_1C.threshold=0.01 ;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] ;Acquisition_1C.pfa=0.01 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_1C.doppler_max=8000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_1C.doppler_step=500 ;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take ;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] ;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition]) Acquisition_1C.bit_transition_flag=false ;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true Acquisition_1C.max_dwells=1 ;######### ACQUISITION CHANNELS CONFIG ###### ;#The following options are specific to each channel and overwrite the generic options ;######### TRACKING GLOBAL CONFIG ############ ;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_PLL_C_Aid_Tracking] Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking ;#item_type: Type and resolution for each of the signal samples. Tracking_1C.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_1C.if=0 ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_1C.dump=false ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_1C.dump_filename=./tracking_ch_ ;#pll_bw_hz: PLL loop filter bandwidth [Hz] Tracking_1C.pll_bw_hz=40.0; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] Tracking_1C.dll_bw_hz=4.0; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_1C.order=3; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] Tracking_1C.early_late_space_chips=0.5; ;######### TELEMETRY DECODER GPS CONFIG ############ ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder TelemetryDecoder_1C.dump=false ;######### OBSERVABLES CONFIG ############ ;#implementation: Observables.implementation=Hybrid_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ ;#implementation: Position Velocity and Time (PVT) implementation: PVT.implementation=RTKLIB_PVT PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] PVT.output_rate_ms=100 ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. PVT.display_rate_ms=500 ;# KML, GeoJSON, NMEA and RTCM output configuration ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. PVT.dump_filename=./PVT ;#nmea_dump_filename: NMEA log path and filename PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea; ;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one) PVT.flag_nmea_tty_port=false; ;#nmea_dump_devname: serial device descriptor for NMEA logging PVT.nmea_dump_devname=/dev/pts/4 PVT.flag_rtcm_server=true PVT.flag_rtcm_tty_port=false PVT.rtcm_dump_devname=/dev/pts/1 ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] PVT.dump=false