; Default configuration file ; You can define your own receiver and invoke it by doing ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second]. GNSS-SDR.internal_fs_sps=4000000 ;######### SIGNAL_SOURCE CONFIG ############ ;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] or [Rtlsdr_Signal_Source] SignalSource.implementation=File_Signal_Source ;#filename: path to file with the captured GNSS signal samples to be processed SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE ;#item_type: Type and resolution for each of the signal samples. ;#Use gr_complex for 32 bits float I/Q or short for I/Q interleaved short integer. ;#If short is selected you should have to instantiate the Ishort_To_Complex data_type_adapter. SignalSource.item_type=ishort ;#sampling_frequency: Original Signal sampling frequency in samples per second SignalSource.sampling_frequency=4000000 ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. SignalSource.samples=0 ;#repeat: Repeat the processing file. Disable this option in this version SignalSource.repeat=false ;#dump: Dump the Signal source data to a file. Disable this option in this version SignalSource.dump=false SignalSource.dump_filename=../data/signal_source.dat ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. ; it helps to not overload the CPU, but the processing time will be longer. SignalSource.enable_throttle_control=false ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner.implementation=Signal_Conditioner ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. ;#implementation: Use [Ishort_To_Complex] or [Pass_Through] DataTypeAdapter.implementation=Ishort_To_Complex ;#dump: Dump the filtered data to a file. DataTypeAdapter.dump=false ;#dump_filename: Log path and filename. DataTypeAdapter.dump_filename=../data/data_type_adapter.dat ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] ;#[Pass_Through] disables this block ;#[Fir_Filter] enables a FIR Filter ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. ;InputFilter.implementation=Fir_Filter ;InputFilter.implementation=Freq_Xlating_Fir_Filter InputFilter.implementation=Pass_Through ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=../data/input_filter.dat ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. InputFilter.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 ;InputFilter.band1_end=0.8 InputFilter.band1_end=0.85 InputFilter.band2_begin=0.90 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.sampling_frequency=4000000 InputFilter.IF=0 ;######### RESAMPLER CONFIG ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation ;Resampler.implementation=Direct_Resampler Resampler.implementation=Pass_Through ;#dump: Dump the resamplered data to a file. Resampler.dump=false ;#dump_filename: Log path and filename. Resampler.dump_filename=../data/resampler.dat ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. Resampler.item_type=gr_complex ;#sample_freq_in: the sample frequency of the input signal Resampler.sample_freq_in=4000000 ;#sample_freq_out: the desired sample frequency of the output signal Resampler.sample_freq_out=4000000 ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available satellite channels. Channels_1C.count=5 ;#in_acquisition: Number of channels simultaneously acquiring Channels.in_acquisition=1 ;######### CHANNEL 0 CONFIG ############ Channel0.signal=1C Channel0.satellite=1 Channel0.repeat_satellite=false ;######### CHANNEL 1 CONFIG ############ Channel1.signal=1C Channel1.satellite=11 Channel1.repeat_satellite=false ;######### CHANNEL 2 CONFIG ############ Channel2.signal=1C Channel2.satellite=17 Channel2.repeat_satellite=false ;######### CHANNEL 3 CONFIG ############ Channel3.signal=1C Channel3.satellite=20 Channel3.repeat_satellite=false ;######### CHANNEL 4 CONFIG ############ Channel4.signal=1C Channel4.satellite=32 Channel4.repeat_satellite=false ;######### ACQUISITION GLOBAL CONFIG ############_1C ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_1C.dump=true ;#filename: Log path and filename ;Acquisition_1C.dump_filename=./acq_dump.dat ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. Acquisition_1C.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_1C.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_1C.coherent-integration_time_ms=4 Acquisition_1C.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition ;######### ACQUISITION CHANNELS CONFIG ###### ;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] Acquisition_1C.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition ;#threshold: Acquisition threshold Acquisition_1C.threshold=0.4 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_1C.doppler_max=10000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_1C.doppler_step=250 ;#repeat_satellite: Use only jointly with the satellte PRN ID option. ;######### TRACKING GLOBAL CONFIG ############ ;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_PLL_C_Aid_Tracking] Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking ;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version. Tracking_1C.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_1C.if=0 ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_1C.dump=false ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_1C.dump_filename=./tracking_ch_ ;#pll_bw_hz: PLL loop filter bandwidth [Hz] Tracking_1C.pll_bw_hz=50.0; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] Tracking_1C.dll_bw_hz=4.0; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_1C.order=3; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] Tracking_1C.early_late_space_chips=0.5; ;######### TELEMETRY DECODER CONFIG ############ ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A. TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder TelemetryDecoder_1C.dump=false ;######### OBSERVABLES CONFIG ############ ;#implementation: Observables.implementation=Hybrid_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ ;#implementation: Position Velocity and Time (PVT) implementation: PVT.implementation=RTKLIB_PVT PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] PVT.output_rate_ms=100; ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. PVT.display_rate_ms=500; ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] PVT.dump=false ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. PVT.dump_filename=./PVT PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea PVT.flag_nmea_tty_port=true PVT.nmea_dump_devname=/dev/pts/4 PVT.flag_rtcm_server=false PVT.flag_rtcm_tty_port=false PVT.rtcm_dump_devname=/dev/pts/1