/*! * \file galileo_e5_signal_processing.cc * \brief This library implements various functions for Galileo E5 signals such * as replica code generation * \author Marc Sales, 2014. marcsales92(at)gmail.com * * Detailed description of the file here if needed. * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "galileo_e5_signal_processing.h" void galileo_e5_a_code_gen_complex_primary(std::complex* _dest, signed int _prn, char _Signal[3]) { unsigned int prn=_prn-1; unsigned int index=0; int a[4]; if ((_prn < 1) || (_prn > 50)) { return; } if (_Signal[0]=='5' && _Signal[1]=='Q') { for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1; i++) { hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(0.0,float(a[0])); _dest[index+1]=std::complex(0.0,float(a[1])); _dest[index+2]=std::complex(0.0,float(a[2])); _dest[index+3]=std::complex(0.0,float(a[3])); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1)); _dest[index]=std::complex(float(0.0),a[0]); _dest[index+1]=std::complex(float(0.0),a[1]); } else if (_Signal[0]=='5' && _Signal[1]=='I') { for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++) { hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(float(a[0]),0.0); _dest[index+1]=std::complex(float(a[1]),0.0); _dest[index+2]=std::complex(float(a[2]),0.0); _dest[index+3]=std::complex(float(a[3]),0.0); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1)); _dest[index]=std::complex(float(a[0]),0.0); _dest[index+1]=std::complex(float(a[1]),0.0); } else if (_Signal[0]=='5' && _Signal[1]=='X') { int b[4]; for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++) { hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i)); hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i)); _dest[index]=std::complex(float(a[0]),float(b[0])); _dest[index+1]=std::complex(float(a[1]),float(b[1])); _dest[index+2]=std::complex(float(a[2]),float(b[2])); _dest[index+3]=std::complex(float(a[3]),float(b[3])); index = index + 4; } // last 2 bits are filled up zeros hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1)); hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1)); _dest[index]=std::complex(float(a[0]),float(b[0])); _dest[index+1]=std::complex(float(a[1]),float(b[1])); } } void galileo_e5_a_code_gen_complex_sampled(std::complex* _dest, char _Signal[3], unsigned int _prn, signed int _fs, unsigned int _chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book unsigned int _samplesPerCode; unsigned int delay; unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS; const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; //Hz std::complex* _code; _code=new std::complex[_codeLength]; galileo_e5_a_code_gen_complex_primary(_code , _prn , _Signal); _samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength)); delay = ((_codeLength - _chip_shift) % _codeLength) * _samplesPerCode / _codeLength; if (_fs != _codeFreqBasis) { std::complex* _resampled_signal; if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0){}; resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); //resamples code to fs delete[] _code; _code = _resampled_signal; } for (unsigned int i = 0; i < _samplesPerCode; i++) { _dest[(i+delay)%_samplesPerCode] = _code[i]; } free(_code); }