/*!
* \file galileo_e5_signal_processing.cc
* \brief This library implements various functions for Galileo E5 signals such
* as replica code generation
* \author Marc Sales, 2014. marcsales92(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5_signal_processing.h"
void galileo_e5_a_code_gen_complex_primary(std::complex* _dest, signed int _prn, char _Signal[3])
{
unsigned int prn=_prn-1;
unsigned int index=0;
int a[4];
if ((_prn < 1) || (_prn > 50))
{
return;
}
if (_Signal[0]=='5' && _Signal[1]=='Q')
{
for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1; i++)
{
hex_to_binary_converter(a,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index]=std::complex(0.0,float(a[0]));
_dest[index+1]=std::complex(0.0,float(a[1]));
_dest[index+2]=std::complex(0.0,float(a[2]));
_dest[index+3]=std::complex(0.0,float(a[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1));
_dest[index]=std::complex(float(0.0),a[0]);
_dest[index+1]=std::complex(float(0.0),a[1]);
}
else if (_Signal[0]=='5' && _Signal[1]=='I')
{
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++)
{
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
_dest[index]=std::complex(float(a[0]),0.0);
_dest[index+1]=std::complex(float(a[1]),0.0);
_dest[index+2]=std::complex(float(a[2]),0.0);
_dest[index+3]=std::complex(float(a[3]),0.0);
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1));
_dest[index]=std::complex(float(a[0]),0.0);
_dest[index+1]=std::complex(float(a[1]),0.0);
}
else if (_Signal[0]=='5' && _Signal[1]=='X')
{
int b[4];
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length()-1; i++)
{
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
hex_to_binary_converter(b,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index]=std::complex(float(a[0]),float(b[0]));
_dest[index+1]=std::complex(float(a[1]),float(b[1]));
_dest[index+2]=std::complex(float(a[2]),float(b[2]));
_dest[index+3]=std::complex(float(a[3]),float(b[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a,
Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length()-1));
hex_to_binary_converter(b,
Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length()-1));
_dest[index]=std::complex(float(a[0]),float(b[0]));
_dest[index+1]=std::complex(float(a[1]),float(b[1]));
}
}
void galileo_e5_a_code_gen_complex_sampled(std::complex* _dest, char _Signal[3],
unsigned int _prn, signed int _fs, unsigned int _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
unsigned int _samplesPerCode;
unsigned int delay;
unsigned int _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS;
const int _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ; //Hz
std::complex* _code;
_code=new std::complex[_codeLength];
galileo_e5_a_code_gen_complex_primary(_code , _prn , _Signal);
_samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
delay = ((_codeLength - _chip_shift)
% _codeLength) * _samplesPerCode / _codeLength;
if (_fs != _codeFreqBasis)
{
std::complex* _resampled_signal;
if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0){};
resampler(_code, _resampled_signal, _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); //resamples code to fs
delete[] _code;
_code = _resampled_signal;
}
for (unsigned int i = 0; i < _samplesPerCode; i++)
{
_dest[(i+delay)%_samplesPerCode] = _code[i];
}
free(_code);
}