/*! * \file glonass_l2_ca_dll_pll_c_aid_tracking_sc.cc * \brief Implementation of a code DLL + carrier PLL tracking block * \author Damian Miralles, 2018. dmiralles2009(at)gmail.com * * * Code DLL + carrier PLL according to the algorithms described in: * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkha user, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "glonass_l2_ca_dll_pll_c_aid_tracking_sc.h" #include "GLONASS_L1_L2_CA.h" #include "glonass_l2_signal_processing.h" #include "gnss_sdr_flags.h" #include "lock_detectors.h" #include "tracking_discriminators.h" #include #include #include #include #include #include #include #include #include #include #include #include #define CN0_ESTIMATION_SAMPLES 10 glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr glonass_l2_ca_dll_pll_c_aid_make_tracking_sc( int64_t fs_in, uint32_t vector_length, bool dump, const std::string &dump_filename, float pll_bw_hz, float dll_bw_hz, float pll_bw_narrow_hz, float dll_bw_narrow_hz, int32_t extend_correlation_ms, float early_late_space_chips) { return glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr(new glonass_l2_ca_dll_pll_c_aid_tracking_sc( fs_in, vector_length, dump, std::move(dump_filename), pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips)); } void glonass_l2_ca_dll_pll_c_aid_tracking_sc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { if (noutput_items != 0) { ninput_items_required[0] = static_cast(d_vector_length) * 2; // set the required available samples in each call } } void glonass_l2_ca_dll_pll_c_aid_tracking_sc::msg_handler_preamble_index(const pmt::pmt_t &msg) { // pmt::print(msg); DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN); if (d_enable_extended_integration == false) // avoid re-setting preamble indicator { d_preamble_timestamp_s = pmt::to_double(std::move(msg)); d_enable_extended_integration = true; d_preamble_synchronized = false; } } glonass_l2_ca_dll_pll_c_aid_tracking_sc::glonass_l2_ca_dll_pll_c_aid_tracking_sc( int64_t fs_in, uint32_t vector_length, bool dump, const std::string &dump_filename, float pll_bw_hz, float dll_bw_hz, float pll_bw_narrow_hz, float dll_bw_narrow_hz, int32_t extend_correlation_ms, float early_late_space_chips) : gr::block("glonass_l1_ca_dll_pll_c_aid_tracking_sc", gr::io_signature::make(1, 1, sizeof(lv_16sc_t)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { // Telemetry bit synchronization message port input this->message_port_register_in(pmt::mp("preamble_timestamp_s")); this->set_msg_handler(pmt::mp("preamble_timestamp_s"), boost::bind(&glonass_l2_ca_dll_pll_c_aid_tracking_sc::msg_handler_preamble_index, this, _1)); this->message_port_register_out(pmt::mp("events")); this->message_port_register_in(pmt::mp("telemetry_to_trk")); // initialize internal vars d_dump = dump; d_fs_in = fs_in; d_vector_length = vector_length; d_dump_filename = std::move(dump_filename); d_correlation_length_samples = static_cast(d_vector_length); // Initialize tracking ========================================== d_pll_bw_hz = pll_bw_hz; d_dll_bw_hz = dll_bw_hz; d_pll_bw_narrow_hz = pll_bw_narrow_hz; d_dll_bw_narrow_hz = dll_bw_narrow_hz; d_code_loop_filter.set_DLL_BW(d_dll_bw_hz); d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz, 2); d_extend_correlation_ms = extend_correlation_ms; // --- DLL variables -------------------------------------------------------- d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) // Initialization of local code replica // Get space for a vector with the C/A code replica sampled 1x/chip d_ca_code = static_cast(volk_gnsssdr_malloc(static_cast(GLONASS_L2_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_ca_code_16sc = static_cast(volk_gnsssdr_malloc(static_cast(GLONASS_L2_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment())); // correlator outputs (scalar) d_n_correlator_taps = 3; // Early, Prompt, and Late d_correlator_outs_16sc = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment())); for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs_16sc[n] = lv_cmake(0, 0); } d_local_code_shift_chips = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); // Set TAPs delay values [chips] d_local_code_shift_chips[0] = -d_early_late_spc_chips; d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = d_early_late_spc_chips; multicorrelator_cpu_16sc.init(2 * d_correlation_length_samples, d_n_correlator_taps); //--- Perform initializations ------------------------------ // define initial code frequency basis of NCO d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_CPS; // define residual code phase (in chips) d_rem_code_phase_samples = 0.0; // define residual carrier phase d_rem_carrier_phase_rad = 0.0; // sample synchronization d_sample_counter = 0ULL; // (from trk to tlm) d_acq_sample_stamp = 0; d_enable_tracking = false; d_pull_in = false; // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = std::vector(FLAGS_cn0_samples); d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = FLAGS_carrier_lock_th; systemName["R"] = std::string("Glonass"); set_relative_rate(1.0 / static_cast(d_vector_length)); d_acquisition_gnss_synchro = nullptr; d_channel = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_acc_carrier_phase_cycles = 0.0; d_code_phase_samples = 0.0; d_enable_extended_integration = false; d_preamble_synchronized = false; d_rem_code_phase_integer_samples = 0; d_code_error_chips_Ti = 0.0; d_pll_to_dll_assist_secs_Ti = 0.0; d_rem_code_phase_chips = 0.0; d_code_phase_step_chips = 0.0; d_carrier_phase_step_rad = 0.0; d_code_error_filt_chips_s = 0.0; d_code_error_filt_chips_Ti = 0.0; d_preamble_timestamp_s = 0.0; d_carr_phase_error_secs_Ti = 0.0; d_carrier_frequency_hz = 0.0; d_carrier_doppler_old_hz = 0.0; d_glonass_freq_ch = 0; // set_min_output_buffer((int64_t)300); } void glonass_l2_ca_dll_pll_c_aid_tracking_sc::start_tracking() { /* * correct the code phase according to the delay between acq and trk */ d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; int64_t acq_trk_diff_samples; double acq_trk_diff_seconds; acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp); // -d_vector_length; DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); // Doppler effect // Fd=(C/(C+Vr))*F d_glonass_freq_ch = GLONASS_L2_CA_FREQ_HZ + (GLONASS_L2_CA_FREQ_HZ * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)); double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch; // new chip and prn sequence periods based on acq Doppler double T_chip_mod_seconds; double T_prn_mod_seconds; double T_prn_mod_samples; d_code_freq_chips = radial_velocity * GLONASS_L2_CA_CODE_RATE_CPS; d_code_phase_step_chips = static_cast(d_code_freq_chips) / static_cast(d_fs_in); T_chip_mod_seconds = 1.0 / d_code_freq_chips; T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS; T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); d_correlation_length_samples = round(T_prn_mod_samples); double T_prn_true_seconds = GLONASS_L2_CA_CODE_LENGTH_CHIPS / GLONASS_L2_CA_CODE_RATE_CPS; double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; double corrected_acq_phase_samples; double delay_correction_samples; corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); if (corrected_acq_phase_samples < 0) { corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; } delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_frequency_hz = d_acq_carrier_doppler_hz + (DFRQ2_GLO * static_cast(GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN))); ; d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast(d_fs_in); // DLL/PLL filter initialization d_carrier_loop_filter.initialize(d_carrier_frequency_hz); // The carrier loop filter implements the Doppler accumulator d_code_loop_filter.initialize(); // initialize the code filter // generate local reference ALWAYS starting at chip 1 (1 sample per chip) glonass_l2_ca_code_gen_complex(gsl::span(d_ca_code, static_cast(GLONASS_L2_CA_CODE_LENGTH_CHIPS)), 0); volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast(GLONASS_L2_CA_CODE_LENGTH_CHIPS)); multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips); for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs_16sc[n] = lv_16sc_t(0, 0); } d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0.0; d_rem_carrier_phase_rad = 0.0; d_rem_code_phase_chips = 0.0; d_acc_carrier_phase_cycles = 0.0; d_pll_to_dll_assist_secs_Ti = 0.0; d_code_phase_samples = d_acq_code_phase_samples; std::string sys_ = &d_acquisition_gnss_synchro->System; sys = sys_.substr(0, 1); // DEBUG OUTPUT std::cout << "Tracking of GLONASS L2 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Tracking of GLONASS L2 C/A signal for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; // enable tracking d_pull_in = true; d_enable_tracking = true; d_enable_extended_integration = true; d_preamble_synchronized = true; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; } int32_t glonass_l2_ca_dll_pll_c_aid_tracking_sc::save_matfile() { // READ DUMP FILE std::ifstream::pos_type size; int32_t number_of_double_vars = 11; int32_t number_of_float_vars = 5; int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars + sizeof(float) * number_of_float_vars + sizeof(uint32_t); std::ifstream dump_file; dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); try { dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); } catch (const std::ifstream::failure &e) { std::cerr << "Problem opening dump file:" << e.what() << std::endl; return 1; } // count number of epochs and rewind int64_t num_epoch = 0; if (dump_file.is_open()) { size = dump_file.tellg(); num_epoch = static_cast(size) / static_cast(epoch_size_bytes); dump_file.seekg(0, std::ios::beg); } else { return 1; } auto abs_E = std::vector(num_epoch); auto abs_P = std::vector(num_epoch); auto abs_L = std::vector(num_epoch); auto Prompt_I = std::vector(num_epoch); auto Prompt_Q = std::vector(num_epoch); auto PRN_start_sample_count = std::vector(num_epoch); auto acc_carrier_phase_rad = std::vector(num_epoch); auto carrier_doppler_hz = std::vector(num_epoch); auto code_freq_chips = std::vector(num_epoch); auto carr_error_hz = std::vector(num_epoch); auto carr_error_filt_hz = std::vector(num_epoch); auto code_error_chips = std::vector(num_epoch); auto code_error_filt_chips = std::vector(num_epoch); auto CN0_SNV_dB_Hz = std::vector(num_epoch); auto carrier_lock_test = std::vector(num_epoch); auto aux1 = std::vector(num_epoch); auto aux2 = std::vector(num_epoch); auto PRN = std::vector(num_epoch); try { if (dump_file.is_open()) { for (int64_t i = 0; i < num_epoch; i++) { dump_file.read(reinterpret_cast(&abs_E[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_P[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_L[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_I[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_Q[i]), sizeof(float)); dump_file.read(reinterpret_cast(&PRN_start_sample_count[i]), sizeof(uint64_t)); dump_file.read(reinterpret_cast(&acc_carrier_phase_rad[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carrier_doppler_hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&code_freq_chips[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carr_error_hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carr_error_filt_hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&code_error_chips[i]), sizeof(double)); dump_file.read(reinterpret_cast(&code_error_filt_chips[i]), sizeof(double)); dump_file.read(reinterpret_cast(&CN0_SNV_dB_Hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carrier_lock_test[i]), sizeof(double)); dump_file.read(reinterpret_cast(&aux1[i]), sizeof(double)); dump_file.read(reinterpret_cast(&aux2[i]), sizeof(double)); dump_file.read(reinterpret_cast(&PRN[i]), sizeof(uint32_t)); } } dump_file.close(); } catch (const std::ifstream::failure &e) { std::cerr << "Problem reading dump file:" << e.what() << std::endl; return 1; } // WRITE MAT FILE mat_t *matfp; matvar_t *matvar; std::string filename = d_dump_filename; filename.erase(filename.length() - 4, 4); filename.append(".mat"); matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73); if (reinterpret_cast(matfp) != nullptr) { std::array dims{1, static_cast(num_epoch)}; matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_E.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_P.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_L.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_I.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_Q.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims.data(), PRN_start_sample_count.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), acc_carrier_phase_rad.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carrier_doppler_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), code_freq_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carr_error_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carr_error_filt_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), code_error_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), code_error_filt_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), CN0_SNV_dB_Hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carrier_lock_test.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), aux1.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), aux2.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), PRN.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); } Mat_Close(matfp); return 0; } glonass_l2_ca_dll_pll_c_aid_tracking_sc::~glonass_l2_ca_dll_pll_c_aid_tracking_sc() { if (d_dump_file.is_open()) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } if (d_dump) { if (d_channel == 0) { std::cout << "Writing .mat files ..."; } try { glonass_l2_ca_dll_pll_c_aid_tracking_sc::save_matfile(); } catch (const std::exception &ex) { LOG(WARNING) << "Error saving the .mat file: " << ex.what(); } if (d_channel == 0) { std::cout << " done." << std::endl; } } volk_gnsssdr_free(d_local_code_shift_chips); volk_gnsssdr_free(d_ca_code); volk_gnsssdr_free(d_ca_code_16sc); volk_gnsssdr_free(d_correlator_outs_16sc); multicorrelator_cpu_16sc.free(); } void glonass_l2_ca_dll_pll_c_aid_tracking_sc::set_channel(uint32_t channel) { d_channel = channel; LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename.append(std::to_string(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl; } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void glonass_l2_ca_dll_pll_c_aid_tracking_sc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; } int glonass_l2_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // Block input data and block output stream pointers const auto *in = reinterpret_cast(input_items[0]); // PRN start block alignment auto **out = reinterpret_cast(&output_items[0]); // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data = Gnss_Synchro(); // process vars double code_error_filt_secs_Ti = 0.0; double CURRENT_INTEGRATION_TIME_S = 0.0; double CORRECTED_INTEGRATION_TIME_S = 0.0; if (d_enable_tracking == true) { // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // Receiver signal alignment if (d_pull_in == true) { int32_t samples_offset; double acq_trk_shif_correction_samples; int32_t acq_to_trk_delay_samples; acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_correlation_length_samples)); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(samples_offset); d_sample_counter += static_cast(samples_offset); // count for the processed samples d_pull_in = false; d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GLONASS_TWO_PI; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GLONASS_TWO_PI; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.fs = d_fs_in; *out[0] = current_synchro_data; consume_each(samples_offset); // shift input to perform alignment with local replica return 1; } // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // perform carrier wipe-off and compute Early, Prompt and Late correlation multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc, in); multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples); // ####### coherent integration extension // keep the last symbols d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output d_L_history.push_back(d_correlator_outs_16sc[2]); // save late output if (static_cast(d_P_history.size()) > d_extend_correlation_ms) { d_E_history.pop_front(); d_P_history.pop_front(); d_L_history.pop_front(); } bool enable_dll_pll; if (d_enable_extended_integration == true) { int64_t symbol_diff = round(1000.0 * ((static_cast(d_sample_counter) + d_rem_code_phase_samples) / static_cast(d_fs_in) - d_preamble_timestamp_s)); if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0) { // compute coherent integration and enable tracking loop // perform coherent integration using correlator output history // std::cout<<"##### RESET COHERENT INTEGRATION ####"<PRN) << " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl << " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl; } // UPDATE INTEGRATION TIME CURRENT_INTEGRATION_TIME_S = static_cast(d_extend_correlation_ms) * GLONASS_L2_CA_CODE_PERIOD_S; enable_dll_pll = true; } else { if (d_preamble_synchronized == true) { // continue extended coherent correlation // Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation double T_chip_seconds = 1.0 / d_code_freq_chips; double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS; double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); int32_t K_prn_samples = round(T_prn_samples); double K_T_prn_error_samples = K_prn_samples - T_prn_samples; d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples; d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples; // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); // remnant code phase [chips] d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast(d_correlation_length_samples), GLONASS_TWO_PI); // UPDATE ACCUMULATED CARRIER PHASE d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI; // disable tracking loop and inform telemetry decoder enable_dll_pll = false; } else { // perform basic (1ms) correlation // UPDATE INTEGRATION TIME CURRENT_INTEGRATION_TIME_S = static_cast(d_correlation_length_samples) / static_cast(d_fs_in); enable_dll_pll = true; } } } else { // UPDATE INTEGRATION TIME CURRENT_INTEGRATION_TIME_S = static_cast(d_correlation_length_samples) / static_cast(d_fs_in); enable_dll_pll = true; } if (enable_dll_pll == true) { // ################## PLL ########################################################## // Update PLL discriminator [rads/Ti -> Secs/Ti] d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag())) / GLONASS_TWO_PI; // prompt output d_carrier_doppler_old_hz = d_carrier_doppler_hz; // Carrier discriminator filter // NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan // Input [s/Ti] -> output [Hz] d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S); // PLL to DLL assistance [Secs/Ti] d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / d_glonass_freq_ch; // code Doppler frequency update d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_CPS + (((d_carrier_doppler_hz - d_carrier_doppler_old_hz) * GLONASS_L2_CA_CODE_RATE_CPS) / d_glonass_freq_ch); // ################## DLL ########################################################## // DLL discriminator d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(std::complex(d_correlator_outs_16sc[0].real(), d_correlator_outs_16sc[0].imag()), std::complex(d_correlator_outs_16sc[2].real(), d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late // Code discriminator filter d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second] d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### // keep alignment parameters for the next input buffer // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation double T_chip_seconds = 1.0 / d_code_freq_chips; double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS; double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); double K_prn_samples = round(T_prn_samples); double K_T_prn_error_samples = K_prn_samples - T_prn_samples; d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast(d_fs_in); // (code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast(d_fs_in); d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples; // ################### PLL COMMANDS ################################################# // carrier phase step (NCO phase increment per sample) [rads/sample] d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI; // UPDATE ACCUMULATED CARRIER PHASE CORRECTED_INTEGRATION_TIME_S = (static_cast(d_correlation_length_samples) / static_cast(d_fs_in)); // remnant carrier phase [rad] d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GLONASS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GLONASS_TWO_PI); // ################### DLL COMMANDS ################################################# // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); // remnant code phase [chips] d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); // ####### CN0 ESTIMATION AND LOCK DETECTORS ####################################### if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast(d_correlator_outs_16sc[1].real()), static_cast(d_correlator_outs_16sc[1].imag())); // prompt d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer.data(), CN0_ESTIMATION_SAMPLES, GLONASS_L2_CA_CODE_PERIOD_S); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer.data(), CN0_ESTIMATION_SAMPLES); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) { d_carrier_lock_fail_counter--; } } if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } } // ########### Output the tracking data to navigation and PVT ########## current_synchro_data.Prompt_I = static_cast((d_correlator_outs_16sc[1]).real()); current_synchro_data.Prompt_Q = static_cast((d_correlator_outs_16sc[1]).imag()); // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!) current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_correlation_length_samples); current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; if (d_preamble_synchronized == true) { current_synchro_data.correlation_length_ms = d_extend_correlation_ms; } else { current_synchro_data.correlation_length_ms = 1; } } else { current_synchro_data.Prompt_I = static_cast((d_correlator_outs_16sc[1]).real()); current_synchro_data.Prompt_Q = static_cast((d_correlator_outs_16sc[1]).imag()); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_correlation_length_samples); current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; // todo: project the carrier doppler current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; } } else { for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs_16sc[n] = lv_cmake(0, 0); } current_synchro_data.System = {'R'}; current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_correlation_length_samples); } current_synchro_data.fs = d_fs_in; *out[0] = current_synchro_data; if (d_dump) { // MULTIPLEXED FILE RECORDING - Record results to file float prompt_I; float prompt_Q; float tmp_E; float tmp_P; float tmp_L; float tmp_VE = 0.0; float tmp_VL = 0.0; float tmp_float; prompt_I = d_correlator_outs_16sc[1].real(); prompt_Q = d_correlator_outs_16sc[1].imag(); tmp_E = std::abs(gr_complex(d_correlator_outs_16sc[0].real(), d_correlator_outs_16sc[0].imag())); tmp_P = std::abs(gr_complex(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag())); tmp_L = std::abs(gr_complex(d_correlator_outs_16sc[2].real(), d_correlator_outs_16sc[2].imag())); try { // Dump correlators output d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); // PRN start sample stamp d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(uint64_t)); // accumulated carrier phase tmp_float = d_acc_carrier_phase_cycles * GLONASS_TWO_PI; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier and code frequency tmp_float = d_carrier_doppler_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_freq_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // PLL commands tmp_float = 1.0 / (d_carr_phase_error_secs_Ti * CURRENT_INTEGRATION_TIME_S); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = 1.0 / (d_code_error_filt_chips_Ti * CURRENT_INTEGRATION_TIME_S); d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // DLL commands tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_error_filt_chips_Ti; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // CN0 and carrier lock test tmp_float = d_CN0_SNV_dB_Hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_carrier_lock_test; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // AUX vars (for debug purposes) tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); auto tmp_double = static_cast(d_sample_counter + d_correlation_length_samples); d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); // PRN uint32_t prn_ = d_acquisition_gnss_synchro->PRN; d_dump_file.write(reinterpret_cast(&prn_), sizeof(uint32_t)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates d_sample_counter += d_correlation_length_samples; // count for the processed samples return 1; // output tracking result ALWAYS even in the case of d_enable_tracking==false }