/*! * \file glonass_l1_ca_dll_pll_tracking_cc.cc * \brief Implementation of a code DLL + carrier PLL tracking block * \author Gabriel Araujo, 2017. gabriel.araujo.5000(at)gmail.com * \author Luis Esteve, 2017. luis(at)epsilon-formacion.com * \author Damian Miralles, 2017. dmiralles2009(at)gmail.com * * * Code DLL + carrier PLL according to the algorithms described in: * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, * A Software-Defined GPS and Galileo Receiver. A Single-Frequency * Approach, Birkha user, 2007 * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include "glonass_l1_ca_dll_pll_tracking_cc.h" #include "GLONASS_L1_L2_CA.h" #include "glonass_l1_signal_processing.h" #include "gnss_sdr_flags.h" #include "lock_detectors.h" #include "tracking_discriminators.h" #include #include #include #include #include #include #include #include #include #include #include #define CN0_ESTIMATION_SAMPLES 10 glonass_l1_ca_dll_pll_tracking_cc_sptr glonass_l1_ca_dll_pll_make_tracking_cc( int64_t fs_in, uint32_t vector_length, bool dump, const std::string &dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) { return glonass_l1_ca_dll_pll_tracking_cc_sptr(new Glonass_L1_Ca_Dll_Pll_Tracking_cc( fs_in, vector_length, dump, std::move(dump_filename), pll_bw_hz, dll_bw_hz, early_late_space_chips)); } void Glonass_L1_Ca_Dll_Pll_Tracking_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { if (noutput_items != 0) { ninput_items_required[0] = static_cast(d_vector_length) * 2; // set the required available samples in each call } } Glonass_L1_Ca_Dll_Pll_Tracking_cc::Glonass_L1_Ca_Dll_Pll_Tracking_cc( int64_t fs_in, uint32_t vector_length, bool dump, const std::string &dump_filename, float pll_bw_hz, float dll_bw_hz, float early_late_space_chips) : gr::block("Glonass_L1_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) { this->message_port_register_out(pmt::mp("events")); this->message_port_register_in(pmt::mp("telemetry_to_trk")); // initialize internal vars d_dump = dump; d_fs_in = fs_in; d_vector_length = vector_length; d_dump_filename = std::move(dump_filename); d_current_prn_length_samples = static_cast(d_vector_length); // Initialize tracking ========================================== d_code_loop_filter.set_DLL_BW(dll_bw_hz); d_carrier_loop_filter.set_PLL_BW(pll_bw_hz); // --- DLL variables ------------------------------------------------------- d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) // Initialization of local code replica // Get space for a vector with the C/A code replica sampled 1x/chip d_ca_code = static_cast(volk_gnsssdr_malloc(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment())); // correlator outputs (scalar) d_n_correlator_taps = 3; // Early, Prompt, and Late d_correlator_outs = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment())); for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } d_local_code_shift_chips = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); // Set TAPs delay values [chips] d_local_code_shift_chips[0] = -d_early_late_spc_chips; d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[2] = d_early_late_spc_chips; multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps); // --- Perform initializations ------------------------------ // define initial code frequency basis of NCO d_code_freq_chips = GLONASS_L1_CA_CODE_RATE_CPS; // define residual code phase (in chips) d_rem_code_phase_samples = 0.0; // define residual carrier phase d_rem_carr_phase_rad = 0.0; // sample synchronization d_sample_counter = 0ULL; // d_sample_counter_seconds = 0; d_acq_sample_stamp = 0; d_enable_tracking = false; d_pull_in = false; // CN0 estimation and lock detector buffers d_cn0_estimation_counter = 0; d_Prompt_buffer = std::vector(FLAGS_cn0_samples); d_carrier_lock_test = 1; d_CN0_SNV_dB_Hz = 0; d_carrier_lock_fail_counter = 0; d_carrier_lock_threshold = FLAGS_carrier_lock_th; systemName["R"] = std::string("Glonass"); d_acquisition_gnss_synchro = nullptr; d_channel = 0; d_acq_code_phase_samples = 0.0; d_acq_carrier_doppler_hz = 0.0; d_carrier_doppler_hz = 0.0; d_carrier_doppler_phase_step_rad = 0.0; d_carrier_frequency_hz = 0.0; d_acc_carrier_phase_rad = 0.0; d_code_phase_samples = 0.0; d_rem_code_phase_chips = 0.0; d_code_phase_step_chips = 0.0; d_carrier_phase_step_rad = 0.0; d_glonass_freq_ch = 0; set_relative_rate(1.0 / static_cast(d_vector_length)); } void Glonass_L1_Ca_Dll_Pll_Tracking_cc::start_tracking() { /* * correct the code phase according to the delay between acq and trk */ d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; int64_t acq_trk_diff_samples; double acq_trk_diff_seconds; acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp); // -d_vector_length; DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); // Doppler effect // Fd=(C/(C+Vr))*F d_glonass_freq_ch = GLONASS_L1_CA_FREQ_HZ + (DFRQ1_GLO * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)); double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch; // new chip and prn sequence periods based on acq Doppler double T_chip_mod_seconds; double T_prn_mod_seconds; double T_prn_mod_samples; d_code_freq_chips = radial_velocity * GLONASS_L1_CA_CODE_RATE_CPS; d_code_phase_step_chips = static_cast(d_code_freq_chips) / static_cast(d_fs_in); T_chip_mod_seconds = 1 / d_code_freq_chips; T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); d_current_prn_length_samples = round(T_prn_mod_samples); double T_prn_true_seconds = GLONASS_L1_CA_CODE_LENGTH_CHIPS / GLONASS_L1_CA_CODE_RATE_CPS; double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; double corrected_acq_phase_samples; double delay_correction_samples; corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); if (corrected_acq_phase_samples < 0) { corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; } delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; d_acq_code_phase_samples = corrected_acq_phase_samples; d_carrier_frequency_hz = d_acq_carrier_doppler_hz + (DFRQ1_GLO * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)); d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast(d_fs_in); d_carrier_doppler_phase_step_rad = GLONASS_TWO_PI * (d_carrier_doppler_hz) / static_cast(d_fs_in); // DLL/PLL filter initialization d_carrier_loop_filter.initialize(); // initialize the carrier filter d_code_loop_filter.initialize(); // initialize the code filter // generate local reference ALWAYS starting at chip 1 (1 sample per chip) glonass_l1_ca_code_gen_complex(gsl::span(d_ca_code, GLONASS_L1_CA_CODE_LENGTH_CHIPS), 0); multicorrelator_cpu.set_local_code_and_taps(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } d_carrier_lock_fail_counter = 0; d_rem_code_phase_samples = 0; d_rem_carr_phase_rad = 0.0; d_rem_code_phase_chips = 0.0; d_acc_carrier_phase_rad = 0.0; d_code_phase_samples = d_acq_code_phase_samples; std::string sys_ = &d_acquisition_gnss_synchro->System; sys = sys_.substr(0, 1); // DEBUG OUTPUT std::cout << "Tracking of GLONASS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Tracking of GLONASS L1 C/A signal for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; // enable tracking d_pull_in = true; d_enable_tracking = true; LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_frequency_hz << " Code Phase correction [samples]=" << delay_correction_samples << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; } Glonass_L1_Ca_Dll_Pll_Tracking_cc::~Glonass_L1_Ca_Dll_Pll_Tracking_cc() { if (d_dump_file.is_open()) { try { d_dump_file.close(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } if (d_dump) { if (d_channel == 0) { std::cout << "Writing .mat files ..."; } try { Glonass_L1_Ca_Dll_Pll_Tracking_cc::save_matfile(); } catch (const std::exception &ex) { LOG(WARNING) << "Error saving the .mat file: " << ex.what(); } if (d_channel == 0) { std::cout << " done." << std::endl; } } try { volk_gnsssdr_free(d_local_code_shift_chips); volk_gnsssdr_free(d_correlator_outs); volk_gnsssdr_free(d_ca_code); multicorrelator_cpu.free(); } catch (const std::exception &ex) { LOG(WARNING) << "Exception in destructor " << ex.what(); } } int32_t Glonass_L1_Ca_Dll_Pll_Tracking_cc::save_matfile() { // READ DUMP FILE std::ifstream::pos_type size; int32_t number_of_double_vars = 11; int32_t number_of_float_vars = 5; int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars + sizeof(float) * number_of_float_vars + sizeof(uint32_t); std::ifstream dump_file; dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); try { dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); } catch (const std::ifstream::failure &e) { std::cerr << "Problem opening dump file:" << e.what() << std::endl; return 1; } // count number of epochs and rewind int64_t num_epoch = 0; if (dump_file.is_open()) { size = dump_file.tellg(); num_epoch = static_cast(size) / static_cast(epoch_size_bytes); dump_file.seekg(0, std::ios::beg); } else { return 1; } auto abs_E = std::vector(num_epoch); auto abs_P = std::vector(num_epoch); auto abs_L = std::vector(num_epoch); auto Prompt_I = std::vector(num_epoch); auto Prompt_Q = std::vector(num_epoch); auto PRN_start_sample_count = std::vector(num_epoch); auto acc_carrier_phase_rad = std::vector(num_epoch); auto carrier_doppler_hz = std::vector(num_epoch); auto code_freq_chips = std::vector(num_epoch); auto carr_error_hz = std::vector(num_epoch); auto carr_error_filt_hz = std::vector(num_epoch); auto code_error_chips = std::vector(num_epoch); auto code_error_filt_chips = std::vector(num_epoch); auto CN0_SNV_dB_Hz = std::vector(num_epoch); auto carrier_lock_test = std::vector(num_epoch); auto aux1 = std::vector(num_epoch); auto aux2 = std::vector(num_epoch); auto PRN = std::vector(num_epoch); try { if (dump_file.is_open()) { for (int64_t i = 0; i < num_epoch; i++) { dump_file.read(reinterpret_cast(&abs_E[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_P[i]), sizeof(float)); dump_file.read(reinterpret_cast(&abs_L[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_I[i]), sizeof(float)); dump_file.read(reinterpret_cast(&Prompt_Q[i]), sizeof(float)); dump_file.read(reinterpret_cast(&PRN_start_sample_count[i]), sizeof(uint64_t)); dump_file.read(reinterpret_cast(&acc_carrier_phase_rad[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carrier_doppler_hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&code_freq_chips[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carr_error_hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carr_error_filt_hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&code_error_chips[i]), sizeof(double)); dump_file.read(reinterpret_cast(&code_error_filt_chips[i]), sizeof(double)); dump_file.read(reinterpret_cast(&CN0_SNV_dB_Hz[i]), sizeof(double)); dump_file.read(reinterpret_cast(&carrier_lock_test[i]), sizeof(double)); dump_file.read(reinterpret_cast(&aux1[i]), sizeof(double)); dump_file.read(reinterpret_cast(&aux2[i]), sizeof(double)); dump_file.read(reinterpret_cast(&PRN[i]), sizeof(uint32_t)); } } dump_file.close(); } catch (const std::ifstream::failure &e) { std::cerr << "Problem reading dump file:" << e.what() << std::endl; return 1; } // WRITE MAT FILE mat_t *matfp; matvar_t *matvar; std::string filename = d_dump_filename; filename.erase(filename.length() - 4, 4); filename.append(".mat"); matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73); if (reinterpret_cast(matfp) != nullptr) { std::array dims{1, static_cast(num_epoch)}; matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_E.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_P.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_L.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_I.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_Q.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims.data(), PRN_start_sample_count.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), acc_carrier_phase_rad.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carrier_doppler_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), code_freq_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carr_error_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carr_error_filt_hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), code_error_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), code_error_filt_chips.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), CN0_SNV_dB_Hz.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), carrier_lock_test.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), aux1.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), aux2.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), PRN.data(), 0); Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarFree(matvar); } Mat_Close(matfp); return 0; } void Glonass_L1_Ca_Dll_Pll_Tracking_cc::set_channel(uint32_t channel) { d_channel = channel; LOG(INFO) << "Tracking Channel set to " << d_channel; // ############# ENABLE DATA FILE LOG ################# if (d_dump == true) { if (d_dump_file.is_open() == false) { try { d_dump_filename.append(std::to_string(d_channel)); d_dump_filename.append(".dat"); d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); } } } } void Glonass_L1_Ca_Dll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) { d_acquisition_gnss_synchro = p_gnss_synchro; } int Glonass_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // process vars double carr_error_hz = 0.0; double carr_error_filt_hz = 0.0; double code_error_chips = 0.0; double code_error_filt_chips = 0.0; // Block input data and block output stream pointers const auto *in = reinterpret_cast(input_items[0]); // PRN start block alignment auto **out = reinterpret_cast(&output_items[0]); // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder Gnss_Synchro current_synchro_data = Gnss_Synchro(); if (d_enable_tracking == true) { // Fill the acquisition data current_synchro_data = *d_acquisition_gnss_synchro; // Receiver signal alignment if (d_pull_in == true) { int32_t samples_offset; double acq_trk_shif_correction_samples; int32_t acq_to_trk_delay_samples; acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; acq_trk_shif_correction_samples = d_current_prn_length_samples - std::fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_current_prn_length_samples)); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(samples_offset); d_sample_counter = d_sample_counter + static_cast(samples_offset); // count for the processed samples d_pull_in = false; // take into account the carrier cycles accumulated in the pull in signal alignment d_acc_carrier_phase_rad -= d_carrier_doppler_phase_step_rad * samples_offset; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.fs = d_fs_in; current_synchro_data.correlation_length_ms = 1; *out[0] = current_synchro_data; consume_each(samples_offset); // shift input to perform alignment with local replica return 1; } // ################# CARRIER WIPEOFF AND CORRELATORS ############################## // perform carrier wipe-off and compute Early, Prompt and Late correlation multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in); multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_current_prn_length_samples); // ################## PLL ########################################################## // PLL discriminator // Update PLL discriminator [rads/Ti -> Secs/Ti] carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GLONASS_TWO_PI; // prompt output // Carrier discriminator filter carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); // New carrier Doppler frequency estimation d_carrier_frequency_hz += carr_error_filt_hz; d_carrier_doppler_hz += carr_error_filt_hz; d_code_freq_chips = GLONASS_L1_CA_CODE_RATE_CPS + ((d_carrier_doppler_hz * GLONASS_L1_CA_CODE_RATE_CPS) / d_glonass_freq_ch); // ################## DLL ########################################################## // DLL discriminator code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti] //early and late // Code discriminator filter code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); // [chips/second] double T_chip_seconds = 1.0 / static_cast(d_code_freq_chips); double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); // [seconds] // double code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GLONASS_L1_CA_CODE_RATE_CPS; // [seconds] // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### // keep alignment parameters for the next input buffer // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // double T_chip_seconds = 1.0 / static_cast(d_code_freq_chips); // double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast(d_fs_in); d_current_prn_length_samples = round(K_blk_samples); // round to a discrete number of samples // ################### PLL COMMANDS ################################################# // carrier phase step (NCO phase increment per sample) [rads/sample] d_carrier_doppler_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast(d_fs_in); // remnant carrier phase to prevent overflow in the code NCO d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples; d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GLONASS_TWO_PI); // carrier phase accumulator d_acc_carrier_phase_rad -= d_carrier_doppler_phase_step_rad * d_current_prn_length_samples; // ################### DLL COMMANDS ################################################# // code phase step (Code resampler phase increment per sample) [chips/sample] d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); // remnant code phase [chips] d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; // rounding error < 1 sample d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast(d_fs_in)); // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) { // fill buffer with prompt correlator output values d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt d_cn0_estimation_counter++; } else { d_cn0_estimation_counter = 0; // Code lock indicator d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer.data(), CN0_ESTIMATION_SAMPLES, GLONASS_L1_CA_CODE_PERIOD_S); // Carrier lock indicator d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer.data(), CN0_ESTIMATION_SAMPLES); // Loss of lock detection if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) { d_carrier_lock_fail_counter++; } else { if (d_carrier_lock_fail_counter > 0) { d_carrier_lock_fail_counter--; } } if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) { std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock d_carrier_lock_fail_counter = 0; d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine } } // ########### Output the tracking data to navigation and PVT ########## current_synchro_data.Prompt_I = static_cast((d_correlator_outs[1]).real()); current_synchro_data.Prompt_Q = static_cast((d_correlator_outs[1]).imag()); current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_current_prn_length_samples); current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; current_synchro_data.Flag_valid_symbol_output = true; current_synchro_data.correlation_length_ms = 1; } else { for (int32_t n = 0; n < d_n_correlator_taps; n++) { d_correlator_outs[n] = gr_complex(0, 0); } current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast(d_current_prn_length_samples); current_synchro_data.System = {'R'}; current_synchro_data.correlation_length_ms = 1; } // assign the GNU Radio block output data current_synchro_data.fs = d_fs_in; *out[0] = current_synchro_data; if (d_dump) { // MULTIPLEXED FILE RECORDING - Record results to file float prompt_I; float prompt_Q; float tmp_E; float tmp_P; float tmp_L; float tmp_float; float tmp_VE = 0.0; float tmp_VL = 0.0; prompt_I = d_correlator_outs[1].real(); prompt_Q = d_correlator_outs[1].imag(); tmp_E = std::abs(d_correlator_outs[0]); tmp_P = std::abs(d_correlator_outs[1]); tmp_L = std::abs(d_correlator_outs[2]); try { // Dump correlators output d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); // PROMPT I and Q (to analyze navigation symbols) d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); // PRN start sample stamp d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(uint64_t)); // accumulated carrier phase tmp_float = d_acc_carrier_phase_rad; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // carrier and code frequency tmp_float = d_carrier_doppler_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_code_freq_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // PLL commands tmp_float = carr_error_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = carr_error_filt_hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // DLL commands tmp_float = code_error_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = code_error_filt_chips; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // CN0 and carrier lock test tmp_float = d_CN0_SNV_dB_Hz; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); tmp_float = d_carrier_lock_test; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); // AUX vars (for debug purposes) tmp_float = d_rem_code_phase_samples; d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); auto tmp_double = static_cast(d_sample_counter + d_current_prn_length_samples); d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); // PRN uint32_t prn_ = d_acquisition_gnss_synchro->PRN; d_dump_file.write(reinterpret_cast(&prn_), sizeof(uint32_t)); } catch (const std::ifstream::failure &e) { LOG(WARNING) << "Exception writing trk dump file " << e.what(); } } consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates d_sample_counter += d_current_prn_length_samples; // count for the processed samples return 1; // output tracking result ALWAYS even in the case of d_enable_tracking==false }