/*! * \file magnitude_squared_test.cc * \brief This file implements tests for the computation of magnitude squared * in long arrays. * \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include DEFINE_int32(size_magnitude_test, 100000, "Size of the arrays used for magnitude testing"); TEST(MagnitudeSquared_Test, StandardCComplexImplementation) { std::complex* input = new std::complex[FLAGS_size_magnitude_test]; float* output = new float[FLAGS_size_magnitude_test]; unsigned int number = 0; struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; for(number = 0; number < (unsigned int)FLAGS_size_magnitude_test; number++) { output[number] = (input[number].real() * input[number].real()) + (input[number].imag() * input[number].imag()); } gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length vector in standard C computed in " << (end - begin) << " microseconds" << std::endl; delete[] input; delete[] output; ASSERT_LE(0, end - begin); } TEST(MagnitudeSquared_Test, C11ComplexImplementation) { const std::vector> input(FLAGS_size_magnitude_test); std::vector output(FLAGS_size_magnitude_test); struct timeval tv; int pos = 0; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; for (const auto &item : input) { output[pos++] = std::norm(item); } gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << " complex vector (C++11-style) finished in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); std::complex expected(0,0); std::complex result(0,0); for (const auto &item : output) { result += item; } ASSERT_EQ(expected, result); } TEST(MagnitudeSquared_Test, ArmadilloComplexImplementation) { arma::cx_fvec input(FLAGS_size_magnitude_test, arma::fill::zeros); arma::fvec output(FLAGS_size_magnitude_test); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; output = arma::abs(arma::square(input)); gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length vector using Armadillo computed in " << (end - begin) << " microseconds" << std::endl; ASSERT_LE(0, end - begin); } TEST(MagnitudeSquared_Test, VolkComplexImplementation) { std::complex* input = static_cast*>(volk_malloc(FLAGS_size_magnitude_test * sizeof(std::complex), volk_get_alignment())); memset(input, 0, sizeof(std::complex) * FLAGS_size_magnitude_test); float* output = static_cast(volk_malloc(FLAGS_size_magnitude_test * sizeof(float), volk_get_alignment())); struct timeval tv; gettimeofday(&tv, NULL); long long int begin = tv.tv_sec * 1000000 + tv.tv_usec; volk_32fc_magnitude_squared_32f(output, input, static_cast(FLAGS_size_magnitude_test)); gettimeofday(&tv, NULL); long long int end = tv.tv_sec * 1000000 + tv.tv_usec; std::cout << "The squared magnitude of a " << FLAGS_size_magnitude_test << "-length vector using VOLK computed in " << (end - begin) << " microseconds" << std::endl; volk_free(input); volk_free(output); ASSERT_LE(0, end - begin); } // volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);