; You can define your own receiver and invoke it by doing ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### GLOBAL OPTIONS ################## ;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second]. GNSS-SDR.internal_fs_sps=4000000 ;######### SIGNAL_SOURCE CONFIG ############ SignalSource.implementation=File_Signal_Source ;#filename: path to file with the captured GNSS signal samples to be processed SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE ;#item_type: Type and resolution for each of the signal samples. SignalSource.item_type=ishort ;#sampling_frequency: Original Signal sampling frequency in samples per second SignalSource.sampling_frequency=4000000 ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. SignalSource.samples=0 ;#repeat: Repeat the processing file. SignalSource.repeat=false ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. ; it helps to not overload the CPU, but the processing time will be longer. SignalSource.enable_throttle_control=false ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner.implementation=Signal_Conditioner ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. ;#implementation: [Pass_Through] disables this block DataTypeAdapter.implementation=Ishort_To_Complex ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: ;#[Pass_Through] disables this block ;#[Fir_Filter] enables a FIR Filter ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. ;InputFilter.implementation=Fir_Filter ;InputFilter.implementation=Freq_Xlating_Fir_Filter InputFilter.implementation=Pass_Through ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of GNU Radio's function: gr_remez. ;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, ;#the desired response on those bands, and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. InputFilter.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 InputFilter.band1_end=0.45 InputFilter.band2_begin=0.55 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.sampling_frequency=4000000 InputFilter.IF=0 ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=../data/input_filter.dat ;######### RESAMPLER CONFIG ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block ;#[Direct_Resampler] enables a resampler that implements a nearest neighborhood interpolation ;Resampler.implementation=Direct_Resampler Resampler.implementation=Pass_Through ;#item_type: Type and resolution for each of the signal samples. Resampler.item_type=gr_complex ;#sample_freq_in: the sample frequency of the input signal Resampler.sample_freq_in=4000000 ;#sample_freq_out: the desired sample frequency of the output signal Resampler.sample_freq_out=4000000 ;#dump: Dump the resampled data to a file. Resampler.dump=false ;#dump_filename: Log path and filename. Resampler.dump_filename=../data/resampler.dat ;######### CHANNELS GLOBAL CONFIG ############ ;#count: Number of available Galileo satellite channels. Channels_1B.count=8 ;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver Channels.in_acquisition=1 Channel.signal=1B ;######### ACQUISITION GLOBAL CONFIG ############ Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition ;#item_type: Type and resolution for each of the signal samples. Acquisition_1B.item_type=gr_complex ;#if: Signal intermediate frequency in [Hz] Acquisition_1B.if=0 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition_1B.sampled_ms=4 ;#threshold: Acquisition threshold ;Acquisition_1B.threshold=0 ;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition] Acquisition_1B.pfa=0.000002 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition_1B.doppler_max=15000 ;#doppler_max: Doppler step in the grid search [Hz] Acquisition_1B.doppler_step=125 ;#cboc: Only for [Galileo_E1_PCPS_Ambiguous_Acquisition]. This option allows you to choose between acquiring with CBOC signal [true] or sinboc(1,1) signal [false]. ;#Use only if GNSS-SDR.internal_fs_sps is greater than or equal to 6138000 Acquisition_1B.cboc=false ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition_1B.dump=false ;#filename: Log path and filename Acquisition_1B.dump_filename=./acq_dump.dat ;######### ACQUISITION CHANNELS CONFIG ###### ;######### ACQUISITION CH 0 CONFIG ############ ;#repeat_satellite: Use only jointly with the satellite PRN ID option. The default value is false ;Acquisition_1B0.repeat_satellite = true ;Acquisition_1B1.repeat_satellite = true ;Acquisition_1B2.repeat_satellite = true ;Acquisition_1B3.repeat_satellite = true ;######### TRACKING GLOBAL CONFIG ############ Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking ;#item_type: Type and resolution for each of the signal samples. Tracking_1B.item_type=gr_complex ;#sampling_frequency: Signal Intermediate Frequency in [Hz] Tracking_1B.if=0 ;#pll_bw_hz: PLL loop filter bandwidth [Hz] Tracking_1B.pll_bw_hz=15.0; ;#dll_bw_hz: DLL loop filter bandwidth [Hz] Tracking_1B.dll_bw_hz=2.0; ;#fll_bw_hz: FLL loop filter bandwidth [Hz] Tracking_1B.fll_bw_hz=10.0; ;#order: PLL/DLL loop filter order [2] or [3] Tracking_1B.order=3; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo Tracking_1B.early_late_space_chips=0.15; ;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6] Tracking_1B.very_early_late_space_chips=0.6; Tracking_1B.track_pilot=true ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] Tracking_1B.dump=false ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. Tracking_1B.dump_filename=../data/veml_tracking_ch_ ;######### TELEMETRY DECODER CONFIG ############ TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder TelemetryDecoder_1B.dump=false ;######### OBSERVABLES CONFIG ############ Observables.implementation=Hybrid_Observables ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] Observables.dump=false ;#dump_filename: Log path and filename. Observables.dump_filename=./observables.dat ;######### PVT CONFIG ############ ;#implementation: Position Velocity and Time (PVT) implementation: PVT.implementation=RTKLIB_PVT PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] PVT.output_rate_ms=100; ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. PVT.display_rate_ms=500; ;# KML, GeoJSON, NMEA and RTCM output configuration ;#nmea_dump_filename: NMEA log path and filename PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea; ;#flag_nmea_tty_port: Enables or disables the NMEA log to a serial TTY port (Can be used with real hardware or virtual one) PVT.flag_nmea_tty_port=true ;#nmea_dump_devname: serial device descriptor for NMEA logging PVT.nmea_dump_devname=/dev/pts/4 ;#flag_rtcm_server: Enables or disables a TCP/IP server transmitting RTCM 3.2 messages (accepts multiple clients, port 2101 by default) PVT.flag_rtcm_server=true; PVT.rtcm_tcp_port=2101 PVT.rtcm_MT1045_rate_ms=5000 PVT.rtcm_MSM_rate_ms=1000 ;#flag_rtcm_tty_port: Enables or disables the RTCM log to a serial TTY port (Can be used with real hardware or virtual one) PVT.flag_rtcm_tty_port=false; ;#rtcm_dump_devname: serial device descriptor for RTCM logging PVT.rtcm_dump_devname=/dev/pts/1 ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] PVT.dump=false ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump, ".kml" and ".geojson" to GIS-friendly formats. PVT.dump_filename=./PVT