/*! * \file volk_gnsssdr_32f_xn_resampler_32f_xn.h * \brief VOLK_GNSSSDR kernel: Resamples N complex 32-bit float vectors using zero hold resample algorithm. * \authors * * VOLK_GNSSSDR kernel that resamples N 32-bit float vectors using zero hold resample algorithm. * It is optimized to resample a single GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed * (i.e. it creates the Early, Prompt, and Late code replicas) * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ /*! * \page volk_gnsssdr_32f_xn_resampler_32f_xn * * \b Overview * * Resamples a 32-bit floating point vector , providing \p num_out_vectors outputs. * * Dispatcher Prototype * \code * void volk_gnsssdr_32f_xn_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) * \endcode * * \b Inputs * \li local_code: Vector to be resampled. * \li rem_code_phase_chips: Remnant code phase [chips]. * \li code_phase_step_chips: Phase increment per sample [chips/sample]. * \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code * \li code_length_chips: Code length in chips. * \li num_out_vectors Number of output vectors. * \li num_points: The number of data values to be in the resampled vector. * * \b Outputs * \li result: Pointer to a vector of pointers where the results will be stored. * */ #ifndef INCLUDED_volk_gnsssdr_32f_xn_resampler_32f_xn_H #define INCLUDED_volk_gnsssdr_32f_xn_resampler_32f_xn_H #include #include #include #include #include /* int64_t */ #include #include /* abs */ #ifdef LV_HAVE_GENERIC static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { int local_code_chip_index; int current_correlator_tap; unsigned int n; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { for (n = 0; n < num_points; n++) { // resample code for current tap local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1); local_code_chip_index = local_code_chip_index % code_length_chips; result[current_correlator_tap][n] = local_code[local_code_chip_index]; } } } #endif /* LV_HAVE_GENERIC */ #ifdef LV_HAVE_SSE3 #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int quarterPoints = num_points / 4; int current_correlator_tap; unsigned int n; unsigned int k; const __m128 ones = _mm_set1_ps(1.0f); const __m128 fours = _mm_set1_ps(4.0f); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); __VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4]; int local_code_chip_index_; const __m128i zeros = _mm_setzero_si128(); const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); __m128i local_code_chip_index_reg, aux_i, negatives, i; __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); for (n = 0; n < quarterPoints; n++) { aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm_add_ps(aux, aux2); // floor i = _mm_cvttps_epi32(aux); fi = _mm_cvtepi32_ps(i); igx = _mm_cmpgt_ps(fi, aux); j = _mm_and_ps(igx, ones); aux = _mm_sub_ps(fi, j); // fmod c = _mm_div_ps(aux, code_length_chips_reg_f); i = _mm_cvttps_epi32(c); cTrunc = _mm_cvtepi32_ps(i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 4; ++k) { _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; } indexn = _mm_add_ps(indexn, fours); } for (n = quarterPoints * 4; n < num_points; n++) { // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #ifdef LV_HAVE_SSE3 #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int quarterPoints = num_points / 4; int current_correlator_tap; unsigned int n; unsigned int k; const __m128 ones = _mm_set1_ps(1.0f); const __m128 fours = _mm_set1_ps(4.0f); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); __VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4]; int local_code_chip_index_; const __m128i zeros = _mm_setzero_si128(); const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); __m128i local_code_chip_index_reg, aux_i, negatives, i; __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); for (n = 0; n < quarterPoints; n++) { aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm_add_ps(aux, aux2); // floor i = _mm_cvttps_epi32(aux); fi = _mm_cvtepi32_ps(i); igx = _mm_cmpgt_ps(fi, aux); j = _mm_and_ps(igx, ones); aux = _mm_sub_ps(fi, j); // fmod c = _mm_div_ps(aux, code_length_chips_reg_f); i = _mm_cvttps_epi32(c); cTrunc = _mm_cvtepi32_ps(i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 4; ++k) { _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; } indexn = _mm_add_ps(indexn, fours); } for (n = quarterPoints * 4; n < num_points; n++) { // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #ifdef LV_HAVE_SSE4_1 #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int quarterPoints = num_points / 4; int current_correlator_tap; unsigned int n; unsigned int k; const __m128 fours = _mm_set1_ps(4.0f); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); __VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4]; int local_code_chip_index_; const __m128i zeros = _mm_setzero_si128(); const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); __m128i local_code_chip_index_reg, aux_i, negatives, i; __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); for (n = 0; n < quarterPoints; n++) { aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm_add_ps(aux, aux2); // floor aux = _mm_floor_ps(aux); // fmod c = _mm_div_ps(aux, code_length_chips_reg_f); i = _mm_cvttps_epi32(c); cTrunc = _mm_cvtepi32_ps(i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 4; ++k) { _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; } indexn = _mm_add_ps(indexn, fours); } for (n = quarterPoints * 4; n < num_points; n++) { // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #ifdef LV_HAVE_SSE4_1 #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int quarterPoints = num_points / 4; int current_correlator_tap; unsigned int n; unsigned int k; const __m128 fours = _mm_set1_ps(4.0f); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); __VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4]; int local_code_chip_index_; const __m128i zeros = _mm_setzero_si128(); const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); __m128i local_code_chip_index_reg, aux_i, negatives, i; __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); for (n = 0; n < quarterPoints; n++) { aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm_add_ps(aux, aux2); // floor aux = _mm_floor_ps(aux); // fmod c = _mm_div_ps(aux, code_length_chips_reg_f); i = _mm_cvttps_epi32(c); cTrunc = _mm_cvtepi32_ps(i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 4; ++k) { _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; } indexn = _mm_add_ps(indexn, fours); } for (n = quarterPoints * 4; n < num_points; n++) { // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #ifdef LV_HAVE_AVX #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_a_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int avx_iters = num_points / 8; int current_correlator_tap; unsigned int n; unsigned int k; const __m256 eights = _mm256_set1_ps(8.0f); const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips); const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips); __VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8]; int local_code_chip_index_; const __m256 zeros = _mm256_setzero_ps(); const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips); const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f); __m256i local_code_chip_index_reg, i; __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]); aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); indexn = n0; for (n = 0; n < avx_iters; n++) { __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][8 * n + 7], 1, 0); __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3); aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm256_add_ps(aux, aux2); // floor aux = _mm256_floor_ps(aux); // fmod c = _mm256_div_ps(aux, code_length_chips_reg_f); i = _mm256_cvttps_epi32(c); cTrunc = _mm256_cvtepi32_ps(i); base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); // no negatives c = _mm256_cvtepi32_ps(local_code_chip_index_reg); negatives = _mm256_cmp_ps(c, zeros, 0x01); aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); aux = _mm256_add_ps(c, aux3); local_code_chip_index_reg = _mm256_cvttps_epi32(aux); _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 8; ++k) { _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]]; } indexn = _mm256_add_ps(indexn, eights); } } for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { for (n = avx_iters * 8; n < num_points; n++) { // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #ifdef LV_HAVE_AVX #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_u_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int avx_iters = num_points / 8; int current_correlator_tap; unsigned int n; unsigned int k; const __m256 eights = _mm256_set1_ps(8.0f); const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips); const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips); __VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8]; int local_code_chip_index_; const __m256 zeros = _mm256_setzero_ps(); const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips); const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f); __m256i local_code_chip_index_reg, i; __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn; for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]); aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); indexn = n0; for (n = 0; n < avx_iters; n++) { __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][8 * n + 7], 1, 0); __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3); aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm256_add_ps(aux, aux2); // floor aux = _mm256_floor_ps(aux); // fmod c = _mm256_div_ps(aux, code_length_chips_reg_f); i = _mm256_cvttps_epi32(c); cTrunc = _mm256_cvtepi32_ps(i); base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); // no negatives c = _mm256_cvtepi32_ps(local_code_chip_index_reg); negatives = _mm256_cmp_ps(c, zeros, 0x01); aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); aux = _mm256_add_ps(c, aux3); local_code_chip_index_reg = _mm256_cvttps_epi32(aux); _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 8; ++k) { _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]]; } indexn = _mm256_add_ps(indexn, eights); } } for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { for (n = avx_iters * 8; n < num_points; n++) { // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #ifdef LV_HAVE_NEON #include static inline void volk_gnsssdr_32f_xn_resampler_32f_xn_neon(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) { float** _result = result; const unsigned int neon_iters = num_points / 4; int current_correlator_tap; unsigned int n; unsigned int k; const int32x4_t ones = vdupq_n_s32(1); const float32x4_t fours = vdupq_n_f32(4.0f); const float32x4_t rem_code_phase_chips_reg = vdupq_n_f32(rem_code_phase_chips); const float32x4_t code_phase_step_chips_reg = vdupq_n_f32(code_phase_step_chips); __VOLK_ATTR_ALIGNED(16) int32_t local_code_chip_index[4]; int32_t local_code_chip_index_; const int32x4_t zeros = vdupq_n_s32(0); const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips); const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips); int32x4_t local_code_chip_index_reg, aux_i, negatives, i; float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn, reciprocal; __VOLK_ATTR_ALIGNED(16) const float vec[4] = {0.0f, 1.0f, 2.0f, 3.0f}; uint32x4_t igx; reciprocal = vrecpeq_f32(code_length_chips_reg_f); reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required! float32x4_t n0 = vld1q_f32((float*)vec); for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) { shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]); aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg); indexn = n0; for (n = 0; n < neon_iters; n++) { __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][4 * n + 3], 1, 0); __VOLK_GNSSSDR_PREFETCH(&local_code_chip_index[4]); aux = vmulq_f32(code_phase_step_chips_reg, indexn); aux = vaddq_f32(aux, aux2); // floor i = vcvtq_s32_f32(aux); fi = vcvtq_f32_s32(i); igx = vcgtq_f32(fi, aux); j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones)); aux = vsubq_f32(fi, j); // fmod c = vmulq_f32(aux, reciprocal); i = vcvtq_s32_f32(c); cTrunc = vcvtq_f32_s32(i); base = vmulq_f32(cTrunc, code_length_chips_reg_f); aux = vsubq_f32(aux, base); local_code_chip_index_reg = vcvtq_s32_f32(aux); negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros)); aux_i = vandq_s32(code_length_chips_reg_i, negatives); local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i); vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg); for (k = 0; k < 4; ++k) { _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; } indexn = vaddq_f32(indexn, fours); } for (n = neon_iters * 4; n < num_points; n++) { __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][n], 1, 0); // resample code for current tap local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Take into account that in multitap correlators, the shifts can be negative! if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_ = local_code_chip_index_ % code_length_chips; _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; } } } #endif #endif /*INCLUDED_volk_gnsssdr_32f_xn_resampler_32f_xn_H*/