/*! * \file gps_sdr_signal_replica.cc * \brief This file implements functions for GPS L1 C/A signal replica * generation * \author Javier Arribas, 2011. jarribas(at)cttc.es * * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "gps_sdr_signal_replica.h" #include #include const auto AUX_CEIL = [](float x) { return static_cast(static_cast((x) + 1)); }; void gps_l1_ca_code_gen_int(own::span dest, int32_t prn, uint32_t chip_shift) { constexpr uint32_t code_length = 1023; std::bitset G1{}; std::bitset G2{}; auto G1_register = std::bitset<10>{}.set(); // All true auto G2_register = std::bitset<10>{}.set(); // All true uint32_t lcv; uint32_t lcv2; uint32_t delay; int32_t prn_idx; bool feedback1; bool feedback2; bool aux; // G2 Delays as defined in GPS-ISD-200D const std::array delays = {5 /*PRN1*/, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472, 473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862 /*PRN32*/, 145 /*PRN120*/, 175, 52, 21, 237, 235, 886, 657, 634, 762, 355, 1012, 176, 603, 130, 359, 595, 68, 386 /*PRN138*/}; // compute delay array index for given PRN number if (120 <= prn && prn <= 138) { prn_idx = prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88) } else { prn_idx = prn - 1; } // A simple error check if ((prn_idx < 0) || (prn_idx > 51)) { return; } // Generate G1 & G2 Register for (lcv = 0; lcv < code_length; lcv++) { G1[lcv] = G1_register[0]; G2[lcv] = G2_register[0]; feedback1 = G1_register[7] xor G1_register[0]; feedback2 = G2_register[8] xor G2_register[7] xor G2_register[4] xor G2_register[2] xor G2_register[1] xor G2_register[0]; for (lcv2 = 0; lcv2 < 9; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; G2_register[lcv2] = G2_register[lcv2 + 1]; } G1_register[9] = feedback1; G2_register[9] = feedback2; } // Set the delay delay = code_length - delays[prn_idx]; delay += chip_shift; delay %= code_length; // Generate PRN from G1 and G2 Registers for (lcv = 0; lcv < code_length; lcv++) { aux = G1[(lcv + chip_shift) % code_length] xor G2[delay]; if (aux == true) { dest[lcv] = 1; } else { dest[lcv] = -1; } delay++; delay %= code_length; } } void gps_l1_ca_code_gen_float(own::span dest, int32_t prn, uint32_t chip_shift) { constexpr uint32_t code_length = 1023; std::array ca_code_int{}; gps_l1_ca_code_gen_int(ca_code_int, prn, chip_shift); for (uint32_t ii = 0; ii < code_length; ++ii) { dest[ii] = static_cast(ca_code_int[ii]); } } void gps_l1_ca_code_gen_complex(own::span> dest, int32_t prn, uint32_t chip_shift) { constexpr uint32_t code_length = 1023; std::array ca_code_int{}; gps_l1_ca_code_gen_int(ca_code_int, prn, chip_shift); for (uint32_t ii = 0; ii < code_length; ++ii) { dest[ii] = std::complex(0.0F, static_cast(ca_code_int[ii])); } } /* * Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency * NOTICE: the number of samples is rounded towards zero (integer truncation) */ void gps_l1_ca_code_gen_complex_sampled(own::span> dest, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift) { // This function is based on the GNU software GPS for MATLAB in the Kay Borre book constexpr int32_t codeFreqBasis = 1023000; // chips per second constexpr int32_t codeLength = 1023; constexpr float tc = 1.0F / static_cast(codeFreqBasis); // C/A chip period in sec const auto samplesPerCode = static_cast(static_cast(sampling_freq) / (static_cast(codeFreqBasis) / static_cast(codeLength))); const float ts = 1.0F / static_cast(sampling_freq); // Sampling period in sec std::array, 1023> code_aux{}; int32_t codeValueIndex; float aux; gps_l1_ca_code_gen_complex(code_aux, prn, chip_shift); // generate C/A code 1 sample per chip for (int32_t i = 0; i < samplesPerCode; i++) { // === Digitizing ================================================== // --- Make index array to read C/A code values -------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is one // millisecond). aux = (ts * (static_cast(i) + 1)) / tc; codeValueIndex = AUX_CEIL(aux) - 1; // --- Make the digitized version of the C/A code ------------------- // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == samplesPerCode - 1) { // --- Correct the last index (due to number rounding issues) dest[i] = code_aux[codeLength - 1]; } else { dest[i] = code_aux[codeValueIndex]; // repeat the chip -> upsample } } }