/*! * \file glonass_l1_signal_replica.cc * \brief This file implements various functions for GLONASS L1 CA signal * replica generation * \author Gabriel Araujo, 2017. gabriel.araujo(at)ieee.org * * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "glonass_l1_signal_replica.h" #include #include const auto AUX_CEIL = [](float x) { return static_cast(static_cast((x) + 1)); }; void glonass_l1_ca_code_gen_complex(own::span> dest, uint32_t chip_shift) { const uint32_t code_length = 511; std::bitset G1{}; auto G1_register = std::bitset<9>{}.set(); // All true uint32_t lcv; uint32_t lcv2; bool feedback1; bool aux; /* Generate G1 Register */ for (lcv = 0; lcv < code_length; lcv++) { G1[lcv] = G1_register[2]; feedback1 = G1_register[4] ^ G1_register[0]; for (lcv2 = 0; lcv2 < 8; lcv2++) { G1_register[lcv2] = G1_register[lcv2 + 1]; } G1_register[8] = feedback1; } /* Generate PRN from G1 Register */ for (lcv = 0; lcv < code_length; lcv++) { aux = G1[lcv]; if (aux == true) { dest[lcv] = std::complex(1, 0); } else { dest[lcv] = std::complex(-1, 0); } } /* Generate PRN from G1 and G2 Registers */ for (lcv = 0; lcv < code_length; lcv++) { aux = G1[(lcv + chip_shift) % code_length]; if (aux == true) { dest[lcv] = std::complex(1, 0); } else { dest[lcv] = std::complex(-1, 0); } } } /* * Generates complex GLONASS L1 C/A code for the desired SV ID and sampled to specific sampling frequency */ void glonass_l1_ca_code_gen_complex_sampled(own::span> dest, int32_t sampling_freq, uint32_t chip_shift) { constexpr int32_t codeFreqBasis = 511000; // chips per second constexpr int32_t codeLength = 511; constexpr float tc = 1.0 / static_cast(codeFreqBasis); // C/A chip period in sec const float ts = 1.0F / static_cast(sampling_freq); // Sampling period in sec const auto samplesPerCode = static_cast(static_cast(sampling_freq) / (static_cast(codeFreqBasis) / static_cast(codeLength))); std::array, 511> code_aux{}; int32_t codeValueIndex; float aux; glonass_l1_ca_code_gen_complex(code_aux, chip_shift); // generate C/A code 1 sample per chip for (int32_t i = 0; i < samplesPerCode; i++) { // === Digitizing ================================================== // --- Make index array to read C/A code values -------------------- // The length of the index array depends on the sampling frequency - // number of samples per millisecond (because one C/A code period is // one millisecond). aux = (ts * (static_cast(i) + 1)) / tc; codeValueIndex = AUX_CEIL(aux) - 1; // --- Make the digitized version of the C/A code ------------------ // The "upsampled" code is made by selecting values form the CA code // chip array (caCode) for the time instances of each sample. if (i == samplesPerCode - 1) { // Correct the last index (due to number rounding issues) dest[i] = code_aux[codeLength - 1]; } else { dest[i] = code_aux[codeValueIndex]; // repeat the chip -> upsample } } }