/*! * \file galileo_e1_signal_replica.cc * \brief This library implements various functions for Galileo E1 signal * replica generation * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com * * * ----------------------------------------------------------------------------- * * GNSS-SDR is a Global Navigation Satellite System software-defined receiver. * This file is part of GNSS-SDR. * * Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors) * SPDX-License-Identifier: GPL-3.0-or-later * * ----------------------------------------------------------------------------- */ #include "galileo_e1_signal_replica.h" #include "Galileo_E1.h" #include "gnss_signal_replica.h" #include #include // for size_t #include #include #include #include void galileo_e1_code_gen_int(own::span dest, const std::array& signal_id, int32_t prn) { const std::string galileo_signal = signal_id.data(); const int32_t prn_ = prn - 1; int32_t index = 0; // A simple error check if ((prn < 1) || (prn > 50)) { return; } if (galileo_signal.rfind("1B") != std::string::npos && galileo_signal.length() >= 2) { for (size_t i = 0; i < GALILEO_E1_B_PRIMARY_CODE_STR_LENGTH; i++) { hex_to_binary_converter(dest.subspan(index, 4), GALILEO_E1_B_PRIMARY_CODE[prn_][i]); index += 4; } } else if (galileo_signal.rfind("1C") != std::string::npos && galileo_signal.length() >= 2) { for (size_t i = 0; i < GALILEO_E1_C_PRIMARY_CODE_STR_LENGTH; i++) { hex_to_binary_converter(dest.subspan(index, 4), GALILEO_E1_C_PRIMARY_CODE[prn_][i]); index += 4; } } } void galileo_e1_sinboc_11_gen_int(own::span dest, own::span prn) { constexpr uint32_t length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS; const auto period = static_cast(dest.size() / length_in); for (uint32_t i = 0; i < length_in; i++) { for (uint32_t j = 0; j < (period / 2); j++) { dest[i * period + j] = prn[i]; } for (uint32_t j = (period / 2); j < period; j++) { dest[i * period + j] = -prn[i]; } } } void galileo_e1_sinboc_61_gen_int(own::span dest, own::span prn) { constexpr uint32_t length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS; const auto period = static_cast(dest.size() / length_in); for (uint32_t i = 0; i < length_in; i++) { for (uint32_t j = 0; j < period; j += 2) { dest[i * period + j] = prn[i]; } for (uint32_t j = 1; j < period; j += 2) { dest[i * period + j] = -prn[i]; } } } void galileo_e1_code_gen_sinboc11_float(own::span dest, const std::array& signal_id, uint32_t prn) { const auto codeLength = static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS); std::array primary_code_E1_chips{}; galileo_e1_code_gen_int(primary_code_E1_chips, signal_id, prn); // generate Galileo E1 code, 1 sample per chip for (uint32_t i = 0; i < codeLength; i++) { dest[2 * i] = static_cast(primary_code_E1_chips[i]); dest[2 * i + 1] = -dest[2 * i]; } } void galileo_e1_gen_float(own::span dest, own::span prn, const std::array& signal_id) { const auto codeLength = dest.size(); const float alpha = std::sqrt(10.0F / 11.0F); const float beta = std::sqrt(1.0F / 11.0F); const std::string galileo_signal = signal_id.data(); std::vector sinboc_11(codeLength); std::vector sinboc_61(codeLength); galileo_e1_sinboc_11_gen_int(sinboc_11, prn); // generate sinboc(1,1) 12 samples per chip galileo_e1_sinboc_61_gen_int(sinboc_61, prn); // generate sinboc(6,1) 12 samples per chip if (galileo_signal.rfind("1B") != std::string::npos && galileo_signal.length() >= 2) { for (size_t i = 0; i < codeLength; i++) { dest[i] = alpha * static_cast(sinboc_11[i]) + beta * static_cast(sinboc_61[i]); } } else if (galileo_signal.rfind("1C") != std::string::npos && galileo_signal.length() >= 2) { for (size_t i = 0; i < codeLength; i++) { dest[i] = alpha * static_cast(sinboc_11[i]) - beta * static_cast(sinboc_61[i]); } } } void galileo_e1_code_gen_float_sampled(own::span dest, const std::array& signal_id, bool cboc, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift, bool secondary_flag) { constexpr int32_t codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_CPS; // chips per second const int32_t samplesPerChip = (cboc == true) ? 12 : 2; const uint32_t codeLength = samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS; const std::string galileo_signal = signal_id.data(); auto samplesPerCode = static_cast(static_cast(sampling_freq) / (static_cast(codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS)); const uint32_t delay = ((static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS) - chip_shift) % static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * samplesPerCode / GALILEO_E1_B_CODE_LENGTH_CHIPS; std::vector primary_code_E1_chips(static_cast(GALILEO_E1_B_CODE_LENGTH_CHIPS)); galileo_e1_code_gen_int(primary_code_E1_chips, signal_id, prn); // generate Galileo E1 code, 1 sample per chip std::vector signal_E1(codeLength); if (cboc == true) { galileo_e1_gen_float(signal_E1, primary_code_E1_chips, signal_id); // generate cboc 12 samples per chip } else { std::vector signal_E1_int(static_cast(codeLength)); galileo_e1_sinboc_11_gen_int(signal_E1_int, primary_code_E1_chips); // generate sinboc(1,1) 2 samples per chip for (uint32_t ii = 0; ii < codeLength; ++ii) { signal_E1[ii] = static_cast(signal_E1_int[ii]); } } if (sampling_freq != samplesPerChip * codeFreqBasis) { std::vector resampled_signal(samplesPerCode); resampler(signal_E1, resampled_signal, static_cast(samplesPerChip * codeFreqBasis), sampling_freq); // resamples code to fs signal_E1 = std::move(resampled_signal); } if (galileo_signal.rfind("1C") != std::string::npos && galileo_signal.length() >= 2 && secondary_flag) { std::vector signal_E1C_secondary(static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * samplesPerCode); for (uint32_t i = 0; i < static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); i++) { for (uint32_t k = 0; k < samplesPerCode; k++) { signal_E1C_secondary[i * samplesPerCode + k] = signal_E1[k] * (GALILEO_E1_C_SECONDARY_CODE[i] == '0' ? 1.0F : -1.0F); } } samplesPerCode *= static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); signal_E1 = std::move(signal_E1C_secondary); } for (uint32_t i = 0; i < samplesPerCode; i++) { dest[(i + delay) % samplesPerCode] = signal_E1[i]; } } void galileo_e1_code_gen_complex_sampled(own::span> dest, const std::array& signal_id, bool cboc, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift, bool secondary_flag) { constexpr int32_t codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_CPS; // Hz const std::string galileo_signal = signal_id.data(); auto samplesPerCode = static_cast(static_cast(sampling_freq) / (static_cast(codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS)); if (galileo_signal.rfind("1C") != std::string::npos && galileo_signal.length() >= 2 && secondary_flag) { samplesPerCode *= static_cast(GALILEO_E1_C_SECONDARY_CODE_LENGTH); } std::vector real_code(samplesPerCode); galileo_e1_code_gen_float_sampled(real_code, signal_id, cboc, prn, sampling_freq, chip_shift, secondary_flag); for (uint32_t ii = 0; ii < samplesPerCode; ++ii) { dest[ii] = std::complex(real_code[ii], 0.0F); } } void galileo_e1_code_gen_float_sampled(own::span dest, const std::array& signal_id, bool cboc, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift) { galileo_e1_code_gen_float_sampled(dest, signal_id, cboc, prn, sampling_freq, chip_shift, false); } void galileo_e1_code_gen_complex_sampled(own::span> dest, const std::array& signal_id, bool cboc, uint32_t prn, int32_t sampling_freq, uint32_t chip_shift) { galileo_e1_code_gen_complex_sampled(dest, signal_id, cboc, prn, sampling_freq, chip_shift, false); }