diff --git a/cmake/Modules/FindGPSTK.cmake b/cmake/Modules/FindGPSTK.cmake index 515878d5a..137a34b5b 100644 --- a/cmake/Modules/FindGPSTK.cmake +++ b/cmake/Modules/FindGPSTK.cmake @@ -24,10 +24,10 @@ # also defined, but not for general use are # GPSTK_LIBRARY, where to find the GPSTK library. -FIND_PATH(GPSTK_INCLUDE_DIR Rinex3ObsBase.hpp - HINTS /usr/include/gpstk - /usr/local/include/gpstk - /opt/local/include/gpstk ) +FIND_PATH(GPSTK_INCLUDE_DIR gpstk/Rinex3ObsBase.hpp + HINTS /usr/include + /usr/local/include + /opt/local/include ) SET(GPSTK_NAMES ${GPSTK_NAMES} gpstk libgpstk) FIND_LIBRARY(GPSTK_LIBRARY NAMES ${GPSTK_NAMES} diff --git a/src/tests/system-tests/libs/geofunctions.cc b/src/tests/system-tests/libs/geofunctions.cc index 1f372e8c2..a99e2572e 100644 --- a/src/tests/system-tests/libs/geofunctions.cc +++ b/src/tests/system-tests/libs/geofunctions.cc @@ -28,11 +28,10 @@ * * ------------------------------------------------------------------------- */ -#include "geofunctions.h" -#include -const double STRP_G_SI = 9.80665; -const double STRP_PI = 3.1415926535898; //!< Pi as defined in IS-GPS-200E +#include "geofunctions.h" + +const double STRP_PI = 3.1415926535898; // Pi as defined in IS-GPS-200E arma::mat Skew_symmetric(const arma::vec &a) { @@ -206,17 +205,17 @@ int togeod(double *dphi, double *dlambda, double *h, double a, double finv, doub cosphi = cos(*dphi); // compute radius of curvature in prime vertical direction - N_phi = a / sqrt(1 - esq * sinphi * sinphi); + N_phi = a / sqrt(1.0 - esq * sinphi * sinphi); - // compute residuals in P and Z + // compute residuals in P and Z dP = P - (N_phi + (*h)) * cosphi; dZ = Z - (N_phi * oneesq + (*h)) * sinphi; - // update height and latitude + // update height and latitude *h = *h + (sinphi * dZ + cosphi * dP); *dphi = *dphi + (cosphi * dZ - sinphi * dP) / (N_phi + (*h)); - // test for convergence + // test for convergence if ((dP * dP + dZ * dZ) < tolsq) { break; @@ -234,7 +233,7 @@ int togeod(double *dphi, double *dlambda, double *h, double a, double finv, doub arma::mat Gravity_ECEF(const arma::vec &r_eb_e) { // Parameters - const double R_0 = 6378137; // WGS84 Equatorial radius in meters + const double R_0 = 6378137.0; // WGS84 Equatorial radius in meters const double mu = 3.986004418E14; // WGS84 Earth gravitational constant (m^3 s^-2) const double J_2 = 1.082627E-3; // WGS84 Earth's second gravitational constant const double omega_ie = 7.292115E-5; // Earth rotation rate (rad/s) @@ -260,12 +259,14 @@ arma::mat Gravity_ECEF(const arma::vec &r_eb_e) } -arma::vec LLH_to_deg(arma::vec &LLH) +arma::vec LLH_to_deg(const arma::vec &LLH) { const double rtd = 180.0 / STRP_PI; - LLH(0) = LLH(0) * rtd; - LLH(1) = LLH(1) * rtd; - return LLH; + arma::vec deg = arma::zeros(3, 1); + deg(0) = LLH(0) * rtd; + deg(1) = LLH(1) * rtd; + deg(2) = LLH(2); + return deg; } @@ -297,15 +298,16 @@ double mstokph(double MetersPerSeconds) } -arma::vec CTM_to_Euler(arma::mat &C) +arma::vec CTM_to_Euler(const arma::mat &C) { // Calculate Euler angles using (2.23) + arma::mat CTM = C; arma::vec eul = arma::zeros(3, 1); - eul(0) = atan2(C(1, 2), C(2, 2)); // roll - if (C(0, 2) < -1.0) C(0, 2) = -1.0; - if (C(0, 2) > 1.0) C(0, 2) = 1.0; - eul(1) = -asin(C(0, 2)); // pitch - eul(2) = atan2(C(0, 1), C(0, 0)); // yaw + eul(0) = atan2(CTM(1, 2), CTM(2, 2)); // roll + if (CTM(0, 2) < -1.0) CTM(0, 2) = -1.0; + if (CTM(0, 2) > 1.0) CTM(0, 2) = 1.0; + eul(1) = -asin(CTM(0, 2)); // pitch + eul(2) = atan2(CTM(0, 1), CTM(0, 0)); // yaw return eul; } @@ -354,19 +356,19 @@ arma::vec cart2geo(const arma::vec &XYZ, int elipsoid_selection) do { oldh = h; - N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi))); + N = c / sqrt(1.0 + ex2 * (cos(phi) * cos(phi))); phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h))))); h = sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) / cos(phi) - N; iterations = iterations + 1; if (iterations > 100) { - //std::cout << "Failed to approximate h with desired precision. h-oldh= " << h - oldh; + // std::cout << "Failed to approximate h with desired precision. h-oldh= " << h - oldh; break; } } while (std::fabs(h - oldh) > 1.0e-12); - arma::vec LLH = {{phi, lambda, h}}; //radians + arma::vec LLH = {{phi, lambda, h}}; // radians return LLH; } @@ -399,11 +401,11 @@ void ECEF_to_Geo(const arma::vec &r_eb_e, const arma::vec &v_eb_e, const arma::m void Geo_to_ECEF(const arma::vec &LLH, const arma::vec &v_eb_n, const arma::mat &C_b_n, arma::vec &r_eb_e, arma::vec &v_eb_e, arma::mat &C_b_e) { // Parameters - double R_0 = 6378137; // WGS84 Equatorial radius in meters + double R_0 = 6378137.0; // WGS84 Equatorial radius in meters double e = 0.0818191908425; // WGS84 eccentricity // Calculate transverse radius of curvature using (2.105) - double R_E = R_0 / sqrt(1 - (e * sin(LLH(0))) * (e * sin(LLH(0)))); + double R_E = R_0 / sqrt(1.0 - (e * sin(LLH(0))) * (e * sin(LLH(0)))); // Convert position using (2.112) double cos_lat = cos(LLH(0)); @@ -435,7 +437,7 @@ void Geo_to_ECEF(const arma::vec &LLH, const arma::vec &v_eb_n, const arma::mat void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e) { // Parameters - const double R_0 = 6378137; // WGS84 Equatorial radius in meters + const double R_0 = 6378137.0; // WGS84 Equatorial radius in meters const double e = 0.0818191908425; // WGS84 eccentricity // Calculate transverse radius of curvature using (2.105) @@ -460,9 +462,10 @@ void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_ v_eb_e = C_e_n.t() * v_eb_n; } + double great_circle_distance(double lat1, double lon1, double lat2, double lon2) { - //The Haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. + // The Haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. // generally used geo measurement function double R = 6378.137; // Radius of earth in KM double dLat = lat2 * STRP_PI / 180.0 - lat1 * STRP_PI / 180.0; @@ -475,53 +478,49 @@ double great_circle_distance(double lat1, double lon1, double lat2, double lon2) return d * 1000.0; // meters } -void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu) + +void cart2utm(const arma::vec &r_eb_e, int zone, arma::vec &r_enu) { - //%CART2UTM Transformation of (X,Y,Z) to (E,N,U) in UTM, zone 'zone'. - //% - //%[E, N, U] = cart2utm(X, Y, Z, zone); - //% - //% Inputs: - //% X,Y,Z - Cartesian coordinates. Coordinates are referenced - //% with respect to the International Terrestrial Reference - //% Frame 1996 (ITRF96) - //% zone - UTM zone of the given position - //% - //% Outputs: - //% E, N, U - UTM coordinates (Easting, Northing, Uping) + // Transformation of (X,Y,Z) to (E,N,U) in UTM, zone 'zone' // - //%Kai Borre -11-1994 - //%Copyright (c) by Kai Borre - //% - //% CVS record: - //% $Id: cart2utm.m,v 1.1.1.1.2.6 2007/01/30 09:45:12 dpl Exp $ + // Inputs: + // r_eb_e - Cartesian coordinates. Coordinates are referenced + // with respect to the International Terrestrial Reference + // Frame 1996 (ITRF96) + // zone - UTM zone of the given position // - //%This implementation is based upon - //%O. Andersson & K. Poder (1981) Koordinattransformationer - //% ved Geod\ae{}tisk Institut. Landinspekt\oe{}ren - //% Vol. 30: 552--571 and Vol. 31: 76 - //% - //%An excellent, general reference (KW) is - //%R. Koenig & K.H. Weise (1951) Mathematische Grundlagen der - //% h\"oheren Geod\"asie und Kartographie. - //% Erster Band, Springer Verlag + // Outputs: + // r_enu - UTM coordinates (Easting, Northing, Uping) // - //% Explanation of variables used: - //% f flattening of ellipsoid - //% a semi major axis in m - //% m0 1 - scale at central meridian; for UTM 0.0004 - //% Q_n normalized meridian quadrant - //% E0 Easting of central meridian - //% L0 Longitude of central meridian - //% bg constants for ellipsoidal geogr. to spherical geogr. - //% gb constants for spherical geogr. to ellipsoidal geogr. - //% gtu constants for ellipsoidal N, E to spherical N, E - //% utg constants for spherical N, E to ellipoidal N, E - //% tolutm tolerance for utm, 1.2E-10*meridian quadrant - //% tolgeo tolerance for geographical, 0.00040 second of arc + // Originally written in Matlab by Kai Borre, Nov. 1994 + // Implemented in C++ by J.Arribas // - //% B, L refer to latitude and longitude. Southern latitude is negative - //% International ellipsoid of 1924, valid for ED50 + // This implementation is based upon + // O. Andersson & K. Poder (1981) Koordinattransformationer + // ved Geod\ae{}tisk Institut. Landinspekt\oe{}ren + // Vol. 30: 552--571 and Vol. 31: 76 + // + // An excellent, general reference (KW) is + // R. Koenig & K.H. Weise (1951) Mathematische Grundlagen der + // h\"oheren Geod\"asie und Kartographie. + // Erster Band, Springer Verlag + // + // Explanation of variables used: + // f flattening of ellipsoid + // a semi major axis in m + // m0 1 - scale at central meridian; for UTM 0.0004 + // Q_n normalized meridian quadrant + // E0 Easting of central meridian + // L0 Longitude of central meridian + // bg constants for ellipsoidal geogr. to spherical geogr. + // gb constants for spherical geogr. to ellipsoidal geogr. + // gtu constants for ellipsoidal N, E to spherical N, E + // utg constants for spherical N, E to ellipoidal N, E + // tolutm tolerance for utm, 1.2E-10*meridian quadrant + // tolgeo tolerance for geographical, 0.00040 second of arc + // + // B, L refer to latitude and longitude. Southern latitude is negative + // International ellipsoid of 1924, valid for ED50 double a = 6378388.0; double f = 1.0 / 297.0; @@ -535,10 +534,10 @@ void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu) double scale = 0.9999988; arma::vec v = scale * R * vec + trans; // coordinate vector in ED50 double L = atan2(v(1), v(0)); - double N1 = 6395000; // preliminary value - double B = atan2(v(2) / ((1 - f) * (1 - f) * N1), arma::norm(v.subvec(0, 1)) / N1); // preliminary value + double N1 = 6395000.0; // preliminary value + double B = atan2(v(2) / ((1.0 - f) * (1.0 - f) * N1), arma::norm(v.subvec(0, 1)) / N1); // preliminary value double U = 0.1; - double oldU = 0; + double oldU = 0.0; int iterations = 0; while (fabs(U - oldU) > 1.0E-4) { @@ -553,44 +552,44 @@ void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu) break; } } - //%Normalized meridian quadrant, KW p. 50 (96), p. 19 (38b), p. 5 (21) + // Normalized meridian quadrant, KW p. 50 (96), p. 19 (38b), p. 5 (21) double m0 = 0.0004; double n = f / (2.0 - f); - double m = n * n * (1 / 4 + n * n / 64); - double w = (a * (-n - m0 + m * (1 - m0))) / (1 + n); + double m = n * n * (1.0 / 4.0 + n * n / 64.0); + double w = (a * (-n - m0 + m * (1.0 - m0))) / (1.0 + n); double Q_n = a + w; - //%Easting and longitude of central meridian - double E0 = 500000; - double L0 = (zone - 30.0) * 6.0 - 3.0; + // Easting and longitude of central meridian + double E0 = 500000.0; + double L0 = (zone - 30) * 6.0 - 3.0; - //%Check tolerance for reverse transformation - //double tolutm = STRP_PI / 2.0 * 1.2e-10 * Q_n; - //double tolgeo = 0.000040; - // % Coefficients of trigonometric series - - // % ellipsoidal to spherical geographical, KW p .186 --187, (51) - (52) - // % bg[1] = n * (-2 + n * (2 / 3 + n * (4 / 3 + n * (-82 / 45)))); - // % bg[2] = n ^ 2 * (5 / 3 + n * (-16 / 15 + n * (-13 / 9))); - // % bg[3] = n ^ 3 * (-26 / 15 + n * 34 / 21); - // % bg[4] = n ^ 4 * 1237 / 630; + // Check tolerance for reverse transformation + // double tolutm = STRP_PI / 2.0 * 1.2e-10 * Q_n; + // double tolgeo = 0.000040; + // Coefficients of trigonometric series // - // % spherical to ellipsoidal geographical, KW p.190 --191, (61) - (62) % gb[1] = n * (2 + n * (-2 / 3 + n * (-2 + n * 116 / 45))); - // % gb[2] = n ^ 2 * (7 / 3 + n * (-8 / 5 + n * (-227 / 45))); - // % gb[3] = n ^ 3 * (56 / 15 + n * (-136 / 35)); - // % gb[4] = n ^ 4 * 4279 / 630; + // ellipsoidal to spherical geographical, KW p .186 --187, (51) - (52) + // bg[1] = n * (-2 + n * (2 / 3 + n * (4 / 3 + n * (-82 / 45)))); + // bg[2] = n ^ 2 * (5 / 3 + n * (-16 / 15 + n * (-13 / 9))); + // bg[3] = n ^ 3 * (-26 / 15 + n * 34 / 21); + // bg[4] = n ^ 4 * 1237 / 630; // - // % spherical to ellipsoidal N, E, KW p.196, (69) % gtu[1] = n * (1 / 2 + n * (-2 / 3 + n * (5 / 16 + n * 41 / 180))); - // % gtu[2] = n ^ 2 * (13 / 48 + n * (-3 / 5 + n * 557 / 1440)); - // % gtu[3] = n ^ 3 * (61 / 240 + n * (-103 / 140)); - // % gtu[4] = n ^ 4 * 49561 / 161280; + // spherical to ellipsoidal geographical, KW p.190 --191, (61) - (62) % gb[1] = n * (2 + n * (-2 / 3 + n * (-2 + n * 116 / 45))); + // gb[2] = n ^ 2 * (7 / 3 + n * (-8 / 5 + n * (-227 / 45))); + // gb[3] = n ^ 3 * (56 / 15 + n * (-136 / 35)); + // gb[4] = n ^ 4 * 4279 / 630; // - // % ellipsoidal to spherical N, E, KW p.194, (65) % utg[1] = n * (-1 / 2 + n * (2 / 3 + n * (-37 / 96 + n * 1 / 360))); - // % utg[2] = n ^ 2 * (-1 / 48 + n * (-1 / 15 + n * 437 / 1440)); - // % utg[3] = n ^ 3 * (-17 / 480 + n * 37 / 840); - // % utg[4] = n ^ 4 * (-4397 / 161280); - - // % With f = 1 / 297 we get + // spherical to ellipsoidal N, E, KW p.196, (69) % gtu[1] = n * (1 / 2 + n * (-2 / 3 + n * (5 / 16 + n * 41 / 180))); + // gtu[2] = n ^ 2 * (13 / 48 + n * (-3 / 5 + n * 557 / 1440)); + // gtu[3] = n ^ 3 * (61 / 240 + n * (-103 / 140)); + // gtu[4] = n ^ 4 * 49561 / 161280; + // + // ellipsoidal to spherical N, E, KW p.194, (65) % utg[1] = n * (-1 / 2 + n * (2 / 3 + n * (-37 / 96 + n * 1 / 360))); + // utg[2] = n ^ 2 * (-1 / 48 + n * (-1 / 15 + n * 437 / 1440)); + // utg[3] = n ^ 3 * (-17 / 480 + n * 37 / 840); + // utg[4] = n ^ 4 * (-4397 / 161280); + // + // With f = 1 / 297 we get arma::colvec bg = {-3.37077907e-3, 4.73444769e-6, @@ -612,23 +611,23 @@ void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu) -1.69485209e-10, -2.20473896e-13}; - // % Ellipsoidal latitude, longitude to spherical latitude, longitude + // Ellipsoidal latitude, longitude to spherical latitude, longitude bool neg_geo = false; - if (B < 0) neg_geo = true; + if (B < 0.0) neg_geo = true; double Bg_r = fabs(B); - double res_clensin = clsin(bg, 4, 2 * Bg_r); + double res_clensin = clsin(bg, 4, 2.0 * Bg_r); Bg_r = Bg_r + res_clensin; L0 = L0 * STRP_PI / 180.0; double Lg_r = L - L0; - // % Spherical latitude, longitude to complementary spherical latitude % i.e.spherical N, E + // Spherical latitude, longitude to complementary spherical latitude % i.e.spherical N, E double cos_BN = cos(Bg_r); double Np = atan2(sin(Bg_r), cos(Lg_r) * cos_BN); double Ep = atanh(sin(Lg_r) * cos_BN); - // % Spherical normalized N, E to ellipsoidal N, E + // Spherical normalized N, E to ellipsoidal N, E Np = 2.0 * Np; Ep = 2.0 * Ep; @@ -651,24 +650,18 @@ void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu) } -double clsin(arma::colvec ar, int degree, double argument) +double clsin(const arma::colvec &ar, int degree, double argument) { - //%Clenshaw summation of sinus of argument. - //% - //%result = clsin(ar, degree, argument); + // Clenshaw summation of sinus of argument. // - //% Written by Kai Borre - //% December 20, 1995 - //% - //% See also WGS2UTM or CART2UTM - //% - //% CVS record: - //% $Id: clsin.m,v 1.1.1.1.2.4 2006/08/22 13:45:59 dpl Exp $ - //%========================================================================== + // result = clsin(ar, degree, argument); + // + // Originally written in Matlab by Kai Borre + // Implemented in C++ by J.Arribas double cos_arg = 2.0 * cos(argument); - double hr1 = 0; - double hr = 0; + double hr1 = 0.0; + double hr = 0.0; double hr2; for (int t = degree; t > 0; t--) { @@ -681,32 +674,26 @@ double clsin(arma::colvec ar, int degree, double argument) } -void clksin(arma::colvec ar, int degree, double arg_real, double arg_imag, double *re, double *im) +void clksin(const arma::colvec &ar, int degree, double arg_real, double arg_imag, double *re, double *im) { - //%Clenshaw summation of sinus with complex argument - //%[re, im] = clksin(ar, degree, arg_real, arg_imag); + // Clenshaw summation of sinus with complex argument + // [re, im] = clksin(ar, degree, arg_real, arg_imag); // - //% Written by Kai Borre - //% December 20, 1995 - //% - //% See also WGS2UTM or CART2UTM - //% - //% CVS record: - //% $Id: clksin.m,v 1.1.1.1.2.4 2006/08/22 13:45:59 dpl Exp $ - //%========================================================================== + // Originally written in Matlab by Kai Borre + // Implemented in C++ by J.Arribas double sin_arg_r = sin(arg_real); double cos_arg_r = cos(arg_real); double sinh_arg_i = sinh(arg_imag); double cosh_arg_i = cosh(arg_imag); - double r = 2 * cos_arg_r * cosh_arg_i; - double i = -2 * sin_arg_r * sinh_arg_i; + double r = 2.0 * cos_arg_r * cosh_arg_i; + double i = -2.0 * sin_arg_r * sinh_arg_i; - double hr1 = 0; - double hr = 0; - double hi1 = 0; - double hi = 0; + double hr1 = 0.0; + double hr = 0.0; + double hi1 = 0.0; + double hi = 0.0; double hi2; double hr2; for (int t = degree; t > 0; t--) @@ -727,86 +714,61 @@ void clksin(arma::colvec ar, int degree, double arg_real, double arg_imag, doubl *im = r * hi + i * hr; } + int findUtmZone(double latitude_deg, double longitude_deg) { - //%Function finds the UTM zone number for given longitude and latitude. - //%The longitude value must be between -180 (180 degree West) and 180 (180 - //%degree East) degree. The latitude must be within -80 (80 degree South) and - //%84 (84 degree North). - //% - //%utmZone = findUtmZone(latitude, longitude); - //% - //%Latitude and longitude must be in decimal degrees (e.g. 15.5 degrees not - //%15 deg 30 min). + // Function finds the UTM zone number for given longitude and latitude. + // The longitude value must be between -180 (180 degree West) and 180 (180 + // degree East) degree. The latitude must be within -80 (80 degree South) and + // 84 (84 degree North). // - //%-------------------------------------------------------------------------- - //% SoftGNSS v3.0 - //% - //% Copyright (C) Darius Plausinaitis - //% Written by Darius Plausinaitis - //%-------------------------------------------------------------------------- - //%This program is free software; you can redistribute it and/or - //%modify it under the terms of the GNU General Public License - //%as published by the Free Software Foundation; either version 2 - //%of the License, or (at your option) any later version. - //% - //%This program is distributed in the hope that it will be useful, - //%but WITHOUT ANY WARRANTY; without even the implied warranty of - //%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - //%GNU General Public License for more details. - //% - //%You should have received a copy of the GNU General Public License - //%along with this program; if not, write to the Free Software - //%Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, - //%USA. - //%========================================================================== + // utmZone = findUtmZone(latitude, longitude); // - //%CVS record: - //%$Id: findUtmZone.m,v 1.1.2.2 2006/08/22 13:45:59 dpl Exp $ + // Latitude and longitude must be in decimal degrees (e.g. 15.5 degrees not + // 15 deg 30 min). // - // % % Check value bounds == == == == == == == == == == == == == == == == == == == == == == == == == == = + // Originally written in Matlab by Darius Plausinaitis + // Implemented in C++ by J.Arribas - if ((longitude_deg > 180) || (longitude_deg < -180)) + // Check value bounds + if ((longitude_deg > 180.0) || (longitude_deg < -180.0)) std::cout << "Longitude value exceeds limits (-180:180).\n"; - - if ((latitude_deg > 84) || (latitude_deg < -80)) + if ((latitude_deg > 84.0) || (latitude_deg < -80.0)) std::cout << "Latitude value exceeds limits (-80:84).\n"; // - // % % Find zone == - // == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == - - // % Start at 180 deg west = -180 deg + // Find zone + // + // Start at 180 deg west = -180 deg int utmZone = floor((180 + longitude_deg) / 6) + 1; - //%% Correct zone numbers for particular areas ============================== - - if (latitude_deg > 72) + // Correct zone numbers for particular areas + if (latitude_deg > 72.0) { - // % Corrections for zones 31 33 35 37 - if ((longitude_deg >= 0) && (longitude_deg < 9)) + // Corrections for zones 31 33 35 37 + if ((longitude_deg >= 0.0) && (longitude_deg < 9.0)) { utmZone = 31; } - else if ((longitude_deg >= 9) && (longitude_deg < 21)) + else if ((longitude_deg >= 9.0) && (longitude_deg < 21.0)) { utmZone = 33; } - else if ((longitude_deg >= 21) && (longitude_deg < 33)) + else if ((longitude_deg >= 21.0) && (longitude_deg < 33.0)) { utmZone = 35; } - else if ((longitude_deg >= 33) && (longitude_deg < 42)) + else if ((longitude_deg >= 33.0) && (longitude_deg < 42.0)) { utmZone = 37; } } - else if ((latitude_deg >= 56) && (latitude_deg < 64)) + else if ((latitude_deg >= 56.0) && (latitude_deg < 64.0)) { - // % Correction for zone 32 - if ((longitude_deg >= 3) && (longitude_deg < 12)) + // Correction for zone 32 + if ((longitude_deg >= 3.0) && (longitude_deg < 12.0)) utmZone = 32; } return utmZone; diff --git a/src/tests/system-tests/libs/geofunctions.h b/src/tests/system-tests/libs/geofunctions.h index e31a8a2cb..677dc4a1d 100644 --- a/src/tests/system-tests/libs/geofunctions.h +++ b/src/tests/system-tests/libs/geofunctions.h @@ -94,7 +94,7 @@ arma::mat Gravity_ECEF(const arma::vec &r_eb_e); //!< Calculates acceleration d */ arma::vec cart2geo(const arma::vec &XYZ, int elipsoid_selection); -arma::vec LLH_to_deg(arma::vec &LLH); +arma::vec LLH_to_deg(const arma::vec &LLH); double degtorad(double angleInDegrees); @@ -104,7 +104,7 @@ double mstoknotsh(double MetersPerSeconds); double mstokph(double Kph); -arma::vec CTM_to_Euler(arma::mat &C); +arma::vec CTM_to_Euler(const arma::mat &C); arma::mat Euler_to_CTM(const arma::vec &eul); @@ -151,35 +151,34 @@ void Geo_to_ECEF(const arma::vec &LLH, const arma::vec &v_eb_n, const arma::mat */ void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e); + /*! * \brief The Haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. */ double great_circle_distance(double lat1, double lon1, double lat2, double lon2); + /*! * \brief Transformation of ECEF (X,Y,Z) to (E,N,U) in UTM, zone 'zone'. */ +void cart2utm(const arma::vec &r_eb_e, int zone, arma::vec &r_enu); -void cart2utm(arma::vec r_eb_e, int zone, arma::vec &r_enu); /*! * \brief Function finds the UTM zone number for given longitude and latitude. */ - int findUtmZone(double latitude_deg, double longitude_deg); + /*! * \brief Clenshaw summation of sinus of argument. */ - -double clsin(arma::colvec ar, int degree, double argument); +double clsin(const arma::colvec &ar, int degree, double argument); /*! * \brief Clenshaw summation of sinus with complex argument. */ - - -void clksin(arma::colvec ar, int degree, double arg_real, double arg_imag, double *re, double *im); +void clksin(const arma::colvec &ar, int degree, double arg_real, double arg_imag, double *re, double *im); #endif